This study aims to develop new antifungal dermal films based on their mechanical properties (elongation, adhesion, behaviour towards vapour moisture) and the in vitro availability of miconazole nitrate, used as a pharmaceutical active ingredient in various concentrations. The three polymeric films prepared were translucent or shiny, with the surface of 63.585 cm2, 0.20–0.30 mm thickness, and content of miconazole nitrate of 3.931 or 15.726 mg·cm2. The mechanical resistance and elongation tests demonstrated that the two films based on hydroxyethyl cellulose (HEC) polymer were more elastic than the one prepared with hydroxypropyl methylcellulose (HPMC). The vapour water absorption and vapour water loss capacity of the films revealed that the HPMC film did not dry very well in the process of preparation by the evaporation of the solvent technique, unlike the HEC films that jellified more evenly in water and had higher drying capacity at 40 °C. The in vitro availability of miconazole nitrate from dermal films was evaluated using the Franz diffusion cell method, through a synthetic membrane (Ø 25 mm × 0.45 µm) and acceptor media with pH 7.4 (phosphate buffer and sodium lauryl sulphate 0.045%), resulting a release rate of up to 70%.
Orodispersible tablets (ODTs) are pharmaceutical formulations used to obtain fast therapeutic effects, usually recommended for geriatric and pediatric patients due to their improved compliance, bioavailability, ease of administration, and good palatability. This study aimed to develop ODTs with cannabidiol (CBD) phytocannabinoid extracted from Cannabis sativa used in the treatment of Lennox–Gastaut and Dravet syndromes. The tablets were obtained using an eccentric tableting machine and 9 mm punches. To develop CBD ODTs, the following parameters were varied: the Poloxamer 407 concentration (0 and 10%), the type of co-processed excipient (Prosolv® ODT G2—PODTG2 and Prosolv® EasyTab sp—PETsp), and the type of superdisintegrant (Croscarmellose—CCS, and Soy Polysaccharides—Emcosoy®—EMCS), resulting in eleven formulations (O1–O11). The following dependent parameters were evaluated: friability, disintegration time, crushing strength, and the CBD dissolution at 1, 3, 5, 10, 15, and 30 min. The dependent parameters were verified according to European Pharmacopoeia (Ph. Eur.) requirements. All the tablets obtained were in accordance with quality requirements in terms of friability (less than 1%), and disintegration time (less than 180 s). The crushing strength was between 19 N and 80 N. Regarding the dissolution test, only four formulations exhibited an amount of CBD released higher than 80% at 30 min. Taking into consideration the results obtained and using the Modde 13.1 software, an optimal formulation was developed (O12), which respected the quality criteria chosen (friability 0.23%, crushing strength of 37 N, a disintegration time of 27 s, and the target amount of CBD released in 30 min of 99.3 ± 6%).
Obtaining orodispersible tablets (ODT) containing substances from the second Biopharmaceutical Class has raised concerns as the dissolution test is challenging. This study aimed to select suitable excipients for developing orodispersible tablets containing cannabidiol (CBD) by direct compression method. No similar studies were found in the literature. Excipients from different classes were characterized using the SeDeM-ODT tool: fillers – lactose (LCT) and microcrystalline cellulose (CelMC), sweeteners – sorbitol (SRB) and mannitol (MNT), disintegrants – sodium starch glycolate (SSG), sodium croscarmellose (CCS), soy polysaccharides (Emcosoy® – EMCS) and two co-processed excipients (Prosolv®-ODT G2 – PODTG2 and Prosolv® EasyTab sp – PETsp). Drug compatibility with excipients in binary mixtures (1:1) was verified by Differential Scanning Calorimetry (DSC) and Fourier Transform-Infrared (FTIR) spectroscopy. Using the SeDeM-ODT expert system, the fillers and the co-processed excipients showed good properties regarding compressibility and disintegration behavior. Also, the DSC and FTIR results showed that small or no interactions between the CBD and the excipients took place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.