Trends in the textile industry show a continuous increase in the production and sale of textile materials, which in turn generates a huge amount of discarded clothing every year. This has a negative impact on the environment, on one side, by consuming resources—some of them non-renewables (to produce synthetic polymers)—and on the other side, by polluting the environment through the emission of GHGs (greenhouse gases), the generation of microplastics, and the release of toxic chemicals in the environment (dyes, chemical reagents, etc.). When natural polymers (e.g., cellulose, protein fibers) are used for the manufacturing of clothes, the negative impact is transferred to soil pollution (e.g., by using pesticides, fertilizers). In addition, for the manufacture of clothes from natural fibers, large amounts of water are consumed for irrigation. According to the European Environment Agency (EEA), the consumption of clothing is expected to increase by 63%, from 62 million tonnes in 2019 to 102 million tonnes in 2030. The current article aims to review the latest technologies that are suitable for better disposal of large quantities of textile waste.
The leather industry is facing important environmental issues related to waste disposal. The waste generated during the tanning process is an important resource of protein (mainly collagen) which can be extracted and reused in different applications (e.g., medical, agricultural, leather industry). On the other side, the utilization of chemical fertilizers must be decreased because of the negative effects associated to an extensive use of conventional chemical fertilizers. This review presents current research trends, challenges and future perspectives with respect to the use of hide waste to produce composite polymers that are further transformed in smart fertilizers. Hide waste contains mostly protein (collagen that is a natural polymer), that is extracted to be used in the cross-linking with water soluble copolymers to obtain the hydrogels which are further valorised as smart fertilizers. Smart fertilizers are a new class of fertilizers which allow the controlled release of the nutrients in synchronization with the plant’s demands. Characteristics of hide and leather wastes are pointed out. The fabrication methods of smart fertilizers and the mechanisms for the nutrients release are extensively discussed. This novel method is in agreement with the circular economy concepts and solves, on one side, the problem of hide waste disposal, and on the other side produces smart fertilizers that can successfully replace conventional chemical fertilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.