The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.
We present a comparative study of apoptotic and necrotic morphology (light and scanning electron microscopy), induced by well known experimental conditions (photodynamic treatments, etoposide, hydrogen peroxide, freezing-thawing and serum deprivation) on cell cultures. Our results indicate that morphological criteria (apoptotic cell rounding and shrinkage, and appearance of membrane bubbles in early necrosis) allow to distinguish these cell death mechanisms, and also show that, independently of the damaging agents, the necrotic process occurs in a characteristic sequence (coalescence of membrane bubbles in a single big one that detaches from cells remaining on the substrate).
The photodynamic process induces cell damage and death by the combined effect of a photosensitizer (PS), visible light, and molecular oxygen, which generate singlet oxygen ((1)O(2)) and other reactive oxygen species that are responsible for cytotoxicity. The most important application of this process with increasing biomedical interest is the photodynamic therapy (PDT) of cancer. In addition to hematoporphyrin-based drugs, 2nd generation PSs with better photochemical properties are now studied using cell cultures, experimental tumors and clinical trials. Porphycene is a structural isomer of porphyrin and constitutes an interesting new class of PS. Porphycene derivatives show higher absorption than porphyrins in the red spectral region (lambda > 600 nm, epsilon > 50000 M-(1)cm(-1)) owing to the lower molecular symmetry. Photophysical and photobiological properties of porphycenes make them excellent candidates as PSs, showing fast uptake and diverse subcellular localizations (mainly membranous organelles). Several tetraalkylporphycenes and the tetraphenyl derivative (TPPo) induce photodamage and cell death in vitro. Photodynamic treatments of cultured tumor cells with TPPo and its palladium(II) complex induce cytoskeletal changes, mitotic blockage, and dose-dependent apoptotic or necrotic cell death. Some pharmacokinetic and phototherapeutic studies on experimental tumors after intravenous or topical application of lipophilic alkyl-substituted porphycene derivatives are known. Taking into account all these features, porphycene PSs should be very useful for PDT of cancer and other biomedical applications.
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for the treatment of diseases characterized by uncontrolled cell proliferation, mainly cancer. It involves the selective uptake of a photosensitizer (PS) by neoplastic tissue, which is able to produce reactive oxygen species upon irradiation with light, leading to tumor regression. Here a synergistic cell photoinactivation is reported based on the simultaneous administration of two PSs, zinc(II)-phthalocyanine (ZnPc) and the cationic porphyrin meso-tetrakis(4-N-methylpyridyl)porphine (TMPyP) in three cell lines (HeLa, HaCaT and MCF-7), using very low doses of PDT. We detected changes from predominant apoptosis (without cell detachment) to predominant necrosis, depending on the light dose used (2.4 and 3.6 J/cm2, respectively). Analysis of changes in cytoskeleton components (microtubules and F-actin), FAK protein, as well as time-lapse video microscopy evidenced that HeLa cells were induced to undergo apoptosis, without losing adhesion to the substrate. Moreover, 24 h after intravenous injection into tumor-bearing mice, ZnPc and TMPyP were preferentially accumulated in the tumor area. PDT with combined treatment produced significant retardation of tumor growth. We believe that this combined and highly efficient strategy (two PSs) may provide synergistic curative rates regarding conventional photodynamic treatments (with one PS alone).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.