Many different cells produce and release membraneous microvesicles (MV) or exosomes into their microenvironment. Exosomes represent a specific subtype of secreted derived vesicles which are defined as homogenous vesicles of 30-100 nm lined by a lipid bilayer, which contain a specific set of proteins, lipids, and nucleic acids. There are clear evidences that they serve as important biological signals messengers and carriers in physiological as well as in pathological processes. Those derived from tumours (tumour-derived exosomes, TDexosomes) function as protumourigenic factors that can mediate intercellular communication in the tumour microenvironment and also contribute to cancer progression. The main functions of exosomes in the cancer microenvironment include the following: promotion of primary cancer growth, stimulation of angiogenesis, activation of stromal fibroblasts, sculpting the cancer ECM, generation of a premetastatic niche and suppression of host immune response. Exosomes have recently emerged as potentially promising diagnostic and prognostic biomarkers in cancer and other diseases. This article is a summary of information about the structure and origin of exosomes and also indicates the importance of exosomes and microRNAs in lung cancer. The role of exosomes in NSCLC is little known, and its explanation requires thorough research.
Regulatory T cells (Tregs) represent a small subpopulation of CD4 + cells. Tregs are characterized by the expression of transcription factor Forkhead box protein 3 (FoxP3), also known as scurfin. Tregs are modulators of adaptive immune responses and play an important role in maintaining tolerance to self-antigens, providing the suppression associated with tumour microenvironment as well. These immunomodulatory properties are the main reason for the development of numerous therapeutic strategies, designed to inhibit the activity of cancer cells. However, due to Treg subpopulation diversity and its many functional pathways, the role of these cells in the cancer development and progression is still not fully understood.
Intercellular adhesion molecule-1 (ICAM-1) has been implicated in adhesion of colorectal and pancreatic cancer cells (of the SW480 and PSN-1 line, respectively) to the peritoneal mesothelium. It has been demonstrated that ICAM-1 expression increases with senescence in some cell types, however, the significance of this phenomenon in the context of malignant dissemination remains elusive. In this report we show that the adherence of SW480 and PSN-1 cells to senescent human omentum-derived mesothelial cells (HOMCs) in vitro is greater than to early-passage cells and that the effect is mediated by ICAM-1. Senescent HOMCs display increased expression of ICAM-1 mRNA and cell surface protein. The development of this phenotype is related to increased oxidative stress in senescent cells. The augmented ICAM-1 expression in HOMCs can be reduced by culturing cells with antioxidants; in contrast, exposure of HOMCs to an oxidant, t-BHP, leads to cellular senescence and increased ICAM-1 expression. The effect is partly mediated by activation of p38 MAPK and AP-1 signaling pathways. Finally, culture of HOMCs in the presence of a strong antioxidant, PBN, significantly reduces the senescence-associated increase in SW480 and PSN-1 cancer cell binding. These results indicate that increased oxidative stress and increased expression of ICAM-1 in senescent HOMCs may facilitate peritoneal adhesion of selected colorectal and pancreatic cancers.
Toll-like receptors (TLRs) have been shown to play crucial role in the recognition of unicellular pathogens. We have shown the expression of three TLRs on tumor cells of human laryngeal carcinoma by means of immunohistochemistry. In the current study we searched presence of TLR1-10 on protein and molecular level in larynx carcinoma cell lines and the impact of respective TLR ligands on TLR expression. Larynx carcinoma cell lines have been used. Cell were subjected to immunocytochemistry. RNA isolated from the cells was tested by RT-PCR. Cells were cultured in the presence of respective TLR ligands. Cells than were harvested and subjected to flow cytometry, using anti TLR1-10 Moabs. The cells were evaluated of membrane and cytoplasmic cell staining. TLR reactivity varied in individual cell lines. RT-PCR allowed to show mRNA for all TLRs tested. After short-term cell culture each cell line exhibited distinct pattern of expression of TLRs following interaction with respective ligand. Cytoplasmic TLR staining had usually higher MFI value than membrane one, but after culture with ligand it became reversed. TLRs 7 and 9 showed highest expression in the majority of tumor cells tested. In conclusion, larynx carcinoma cell lines exhibit rather universal expression of TLRs, both on protein and molecular level. Culture of TLR expressing tumor cells with ligands points out for potential reactivity of tumor cells with TLR agonists, what may have therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.