En la actualidad existen investigaciones sobre los diferentes efectos de nanomateriales en la agricultura para mejorar la germinación y la productividad de los cultivos, con la finalidad de garantizar la sostenibilidad económica y el uso eficiente de los recursos de producción en la agricultura. Las nanopartículas de ZnO aplicadas en este estudio fueron sintetizadas por un método de precipitación química y su caracterización se realizó por (XRD), (SEM), espectroscopía UV-visible y (FTIR). Se determinó el efecto sobre la germinación de semillas de lechuga (Lactuca sativa) por medio de un diseño completamente al azar con cinco tratamientos de NPs-ZnO y un tratamiento control cada uno con cuatro repeticiones. Se midieron índices fisiológicos, se cuantificó el contenido de clorofila y carotenoides, y el contenido de compuestos fenólicos en las plántulas de lechuga. Los resultados indican que aplicando dosis de 50 mg L-1 NPs-ZnO, se lograron mayores valores del porcentaje de germinación (36.97%), peso fresco de plúmula (23.91%), peso fresco de radícula (63.25%) y longitud de radícula (50.58%) respecto a los grupos control. Asimismo, se incrementó el contenido de fenoles totales (207.9%). Dosis superiores a 125 mg L-1 NPs-ZnO disminuyen el contenido de clorofila, causando efectos fitotóxicos en las plántulas de L. sativa. En cuanto al contenido de carotenoides el mejor tratamiento fue de 100 mg L-1 NPs-ZnO. El uso de NPs-ZnO sintetizadas a través de un método de precipitación química es una buena alternativa para ser utilizadas como inductores en la biosíntesis de compuestos bioactivos en plántulas de lechuga.
Objective: To examine how priming radish (Raphanus sativus L.) sprouts with zinc oxide nanoparticles (NPs-ZnO) affects their germination, photosynthetic pigments, phenolic compounds, and zinc content. Design/methodology/approach: We evaluated five NPs-ZnO treatments and a control sample with four replications under a completely randomized design. Results: Sprouts treated with NPs-ZnO showed increased germination variables, photosynthetic pigments, phenolic compounds, and zinc content as compared to untreated radish sprouts. Study limitations/implications: It is hard to establish a response model for the effects of NPs since their shape, size, surface charge, chemical composition, and concentration may have a differentiated impact on seed germination. Findings/conclusions: Using NPs-ZnO could be an effective way to enrich crops, since the passage of Zn through plant tissues will cause an accumulation of this micronutrient.
Biofortification is the process of developing a crop with bioavailable micronutrients in its edible parts. This has been done using nanofertilizers, since they can be used to feed plants in a gradual and controlled manner. Therefore, the aim of this work was to evaluate the effect of foliar application of ZnO NPs in different concentrations on the commercial and phytochemical quality of the basil (Ocimum basilicum L.) crop, as it is one of the most important aromatic plants used for chemical and pharmacological properties. Four concentrations of ZnO NPs (5, 10, 15 and 20 mg L-1) and a control treatment under a completely randomized design, were evaluated. The results show statistical differences in morphological parameters (leaf and stem fresh weight, height, number of leaves, leaf area and dry weight) with a slight tendency to increase on the treated basil plants mainly at concentration of 20 mg L-1. The highest chlorophyll content (5.54 µg g-1 FW) was obtained for the control treatment, whereas the lowest one (4.14 µg g-1 FW) was observed for the 20 mg L-1 treatment. However, carotenoid content in the leaves was markedly higher than the control, the control had the concentration of 0.84 µg g-1 FW, while the treatment with 20 mg L-1 ZnO NPs registered a value of 1.08 µg g-1 FW. The highest total phenolic, flavonoid, antioxidant capacity and vitamin C content was obtained for 20 mg L-1 ZnO NPs. Finally, basil plants treated with ZnO NPs could stimulate enzymatic activity, as demonstrated in this study. Detailed studies are suggested to understand the mechanism of action of nanoscale materials.
Organophosphates are among the most used and the most toxic pesticides that inhibit acetylcholinesterase. The enzyme aceticolinesterase (AChE) is widely used to detect organophosphate pollutants because they are inhibitors of its activity. A source of this enzyme is present in Eisenia foetida, being the AChEs of these earthworms susceptible to this effect. In this work, an enzymatic concentrate of acetylcholinesterase was prepared from E. foetida. The inhibitory effect of commercial organophosphorus pesticides as malathion, diazinon, methamidophos and dimethoate on its enzymatic activity was evaluated, as well as its selectivity when using organochlorine, carbamate and pyrethroid pesticides. Acetylcholinesterase activity was measured using indoxyl acetate as chromogenic substrate. Results showed that all organophosphorus pesticides tested, in concentrations between 1-10 mg/L, were able to decrease acetylcholinesterase activity in percentages of 36 ± 16 % on average. On the other hand, carbamates slightly inhibited the enzymatic activity in a 16 ± 7 %, and organochlorines and pyrethroids showed a little or no significant inhibitory effect of 1 ± 5 % for any tested concentrations. This is because the mode of action of each group of pesticides is different. For this reason, the activity of the enzyme is not significantly affected and it remains catalyzing the decomposition of indoxyl acetate even in the presence of pesticides with chemical groups different to organophosphates, which is indicative of acetylcholinesterase selectivity against this specific type of inhibitors.
El poli (3,4-etilendioxitiofeno) (PEDOT) es uno de los polímeros conjugados más estudiados en los últimos años debido a sus interesantes propiedades electro-ópticas. Este polímero manifiesta conductividad, puede ser usado en dispositivos electrocrómicos y es sintetizado a partir del monómero 3,4-etilendioxitiofeno (EDOT). Los protocolos sintéticos más utilizados, hasta la fecha, para obtención de PEDOT implican condiciones altamente oxidantes y pH muy bajos que no son compatibles con sistemas biológicos de síntesis, por lo que como alternativa, en este trabajo se plantea el uso de un catalizador biomimético basado en hematina soportada en MCM-41 para su uso en la oxidación de EDOT en condicion ácidas a pH 2 en presencia de poliestirensulfonato (PSS) como agente dopante y H2O2 como agente oxidante. Se evaluó el rendimiento de las reacciones biomiméticas bajo diferentes condiciones de reacción, así como la capacidad de reutilización del catalizador. Los resultados mostraron que la concentración míníma de catalizador hematina/MCM-41 es de 5 mg y que éste puede ser reutilizado hasta en nueve ciclos de reacción sin que esto afecte el rendimiento de obtención de PEDOT/PSS, el cual se mantuvo entre 68-81%. Además se estableció, mediante análisis por espectroscopias UV-Visible y FT-IR que las propiedades químicas del PEDOT/PSS son comparables a las obtenidas por otros métodos de síntesis y que estas no varían en función de la concentración de oxidante. Lo anterior índica que el catalizador biomimético hematína/MCM-41 es estable bajo las condiciones de reacción estudiadas y por tanto representa una alternativa viable de bajo costo para obtención dePEDOT/PSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.