Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. Increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis by direct support of tumor growth, self-renewal of glioma initiating stem cells and inhibiting of anti-tumor immunity. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show promises as novel, potential anti-tumor therapeutics.
Gliomas attract brain-resident (microglia) and peripheral macrophages and reprogram these cells into immunosuppressive, pro-invasive cells. M-CSF (macrophage colony-stimulating factor, encoded by the CSF1 gene) has been implicated in the control of recruitment and polarization of macrophages in several cancers. We found that murine GL261 glioma cells overexpress GM-CSF (granulocyte-macrophage colony-stimulating factor encoded by the CSF2 gene) but not M-CSF when compared to normal astrocytes. Knockdown of GM-CSF in GL261 glioma cells strongly reduced microglia-dependent invasion in organotypical brain slices and growth of intracranial gliomas and extended animal survival. The number of infiltrating microglia/macrophages (Iba1(+) cells) and intratumoural angiogenesis were reduced in murine gliomas depleted of GM-CSF. M1/M2 gene profiling in sorted microglia/macrophages suggests impairment of their pro-invasive activation in GM-CSF-depleted gliomas. Deficiency of M-CSF (op/op mice) did not affect glioma growth in vivo and the accumulation of Iba1(+) cells, but impaired accumulation of Iba1(+) cells in response to demyelination. These results suggest that distinct cytokines of the CSF family contribute to macrophage infiltration of tumours and in response to injury. The expression of CSF2 (but not CSF1) was highly up-regulated in glioblastoma patients and we found an inverse correlation between CSF2 expression and patient survival. Therefore we propose that GM-CSF triggers and drives the alternative activation of tumour-infiltrating microglia/macrophages in which these cells support tumour growth and angiogenesis and shape the immune microenvironment of gliomas.
Tumour tissue is infiltrated by myeloid cells that are reprogrammed into alternatively activated/regenerative (M2) macrophages. The contribution of major signalling pathways and their modulators/targets involved in the macrophage reprogramming is poorly known. Glioblastoma (malignant brain tumour) attracts and reprograms brain-resident microglia and peripheral macrophages into cells that increase invasion, angiogenesis and suppress antitumour immunity. Using a 'function-first' approach and glioma secretome proteomics we identified osteopontin and lactadherin as proteins that cooperatively activate amoeboid transformation, phagocytosis and motility of primary microglia cultures via integrins and FAK-Akt (focal adhesion kinase-Akt) signalling. A synthetic peptide interfering with integrin ligands blocks glioma-microglia communication, functional activation and M2 gene expression. We found that osteopontin/secreted phosphoprotein 1 (Spp1) produced by non-transformed cells acts as a proinflammatory factor inducing inflammatory signalling and M1 genes, and counteracts the action of lactadherin. Using constructs encoding functional mutants of osteopontin, we demonstrated sequential processing of Spp1 by thrombin and matrix metalloproteinase-3 and/or -7 (MMP-3 and/or -7) in glioma cells, which generates a microglia-activating form devoid of the inflammatory activity, while retaining the M2 reprogramming potential. A similar form of osteopontin is secreted by human glioma cells but not normal human astrocytes. Knockdown of osteopontin or lactadherin in glioma cells reduces intracranial glioma growth, blocks amoeboid transformation of myeloid cells and affects M2 reprogramming of microglia/macrophages. Our findings demonstrate how glioma cells misuse macrophage-activating signals and redesign primarily proinflammatory signals towards their advantage to induce M2 reprogramming of tumour-infiltrating brain macrophages.
Metastasis is a multistep process that is critically dependent on the interaction of metastasizing tumor cells with cells in the local microenvironment. Within this tumor stroma, vesselassociated pericytes and myofibroblasts share a number of traits, including the upregulated expression of the transmembrane receptor endosialin (CD248). Comparative experiments in wild-type and endosialin-deficient mice revealed that stromal endosialin does not affect primary tumor growth but strongly promotes spontaneous metastasis. Mechanistically, endosialin-expressing pericytes in the primary tumor facilitate distant site metastasis by promoting tumor cell intravasation in a cell contact-dependent manner, resulting in elevated numbers of circulating tumor cells. Corresponding to these preclinical experiments, in independent cohorts of primary human breast cancers, upregulated endosialin expression significantly correlates with increased metastasis and poorer patient survival. Together, the data demonstrate a critical role for endosialin-expressing primary tumor pericytes in mediating metastatic dissemination and identify endosialin as a promising therapeutic target in breast cancer. Cancer Res; 76(18); 5313-25. Ó2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.