CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.
The CRNDE gene seems to play an oncogenic role in cancers, though its exact function remains unknown. Here, we tried to assess its usefulness as a molecular prognostic marker in ovarian cancer. Based on results of our microarray studies, CRNDE transcripts were further analyzed by Real-Time qPCR-based profiling of their expression. The qPCR study was conducted with the use of personally designed TaqMan assays on 135 frozen tissue sections of ovarian carcinomas from patients treated with platinum compounds and either cyclophosphamide (PC, N = 32) or taxanes (TP, N = 103). Elevated levels of two different CRNDE transcripts were a negative prognostic factor; they increased the risk of death and recurrence in the group of patients treated with TP, but not PC (DNA-damaging agents only). Higher associations were found for overexpression of the short CRNDE splice variant (FJ466686): HR 6.072, 95% CI 1.814–20.32, p = 0.003 (the risk of death); HR 15.53, 95% CI 3.812–63.28, p < 0.001 (the risk of recurrence). Additionally, accumulation of the TP53 protein correlated with decreased expression of both CRNDE transcripts in tumor cells. Our results depict CRNDE as a potential marker of poor prognosis in women with ovarian carcinomas, and suggest that its significance depends on the therapeutic regimen used.
EMSY, a BRCA2–associated protein, is amplified and overexpressed in various sporadic cancers. This is the first study assessing the clinical impact of its expression and polymorphisms on ovarian cancer (OvCa) outcome in the context of the chemotherapy regimen used. In 134 frozen OvCa samples, we assessed EMSY mRNA expression with Reverse Transcription-quantitative PCR, and also investigated the EMSY gene sequence using SSCP and/or PCR-sequencing. Clinical relevance of changes in EMSY mRNA expression and DNA sequence was evaluated in two subgroups treated with either taxane/platinum (TP, n=102) or platinum/cyclophosphamide (PC, n=32). High EMSY expression negatively affected overall survival (OS), disease-free survival (DFS) and sensitivity to treatment (PS) in the TP-treated subgroup (p-values: 0.001, 0.002 and 0.010, respectively). Accordingly, our OvCa cell line studies showed that the EMSY gene knockdown sensitized A2780 and IGROV1 cells to paclitaxel. Interestingly, EMSY mRNA expression in surviving cells was similar as in the control cells. Additionally, we identified 24 sequence alterations in the EMSY gene, including the previously undescribed: c.720G>C, p.(Lys240Asn); c.1860G>A, p.(Lys620Lys); c.246-76A>G; c.421+68A>C. In the PC-treated subgroup, a heterozygous genotype comprising five SNPs (rs4300410, rs3814711, rs4245443, rs2508740, rs2513523) negatively correlated with OS (p-value=0.009). The same SNPs exhibited adverse borderline associations with PS in the TP-treated subgroup. This is the first study providing evidence that high EMSY mRNA expression is a negative prognostic and predictive factor in OvCa patients treated with TP, and that the clinical outcome may hinge on certain SNPs in the EMSY gene as well.
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
The p53 protein is one of the most important suppressors of neoplastic transformation. It regulates transcription of multiple genes and interacts directly with other proteins. It plays a significant role in the most important processes that take place in the cell, including: DNA repair, cell cycle and programmed cell death-apoptosis. Loss of its proper function leads to a disturbance of the mechanisms controlling cell proliferation and survival, which contributes to the development of neoplasms. The TP53 gene is called the guardian of the genome. Its mutations occur in a large percentage of tumors. They most often concern sequences that encode the DNA-binding domain (exons 5-8). The TP53 gene, together with the TP63 and TP73 genes, belongs to the oldest evolutionary family of cancer transformation suppressors. Its product, a full length p53 protein, consists of five domains and a flexible consolidator region and functions as a homotetramer. The regulation of p53 activity is caused by MDM2 protein, which contributes to proteasomal degradation of the suppressor. This review deals with the most important aspects of the regulation of cell activity by p53 protein. It describes the structure of p53 protein and the associated therapeutic possibilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.