Horizontal strains related to mining-induced subsidence may endanger infrastructure and surface users’ safety. While directional horizontal strains should be well determined, appropriate solutions for a complete assessment of the terrain surface deformation field are still required. As a result, the presented study examined a new method for calculating horizontal strain tensor based on the decomposition of satellite radar interferometry (InSAR) observations into vertical and azimuth look direction (ALD) displacements. Based on a geometric integral model, we tested our method on experimental data before applying it to an underground copper ore mine in Poland. In the case study, the displacement field was determined using the Multi-Temporal InSAR method on Sentinel-1 data. The model data relative error did not exceed 0.02 at σ = ±0.003. For the case study, land subsidence of up to −167 mm and ALD displacements ranging from −110 mm to +62 mm was obtained, whereas the extreme values of horizontal strains ranged from −0.52 mm/m to +0.36 mm/m at σ = ±0.050 mm/m. Our results demonstrate the high accuracy of the method in determining the horizontal strain tensor. As a result, the approach can broaden the assessment of the environmental impact of land subsidence worldwide.
The marine-terminating glaciers are one of the biggest contributors to global sea-level rise. Research on this aspect of the effects of global climate change is developing nowadays in several directions. One of them is monitoring of glaciers movements, especially with satellite data. In addition to well-known analyzes based on radar data from available satellites, the possibility of studying glacier displacements from new sensors, the so-called microsatellites need to be studied. The main purpose of research was evaluation of the possibility of applying new high-resolution ICEYE radar data to observe glacier motion. Stripmap High mode were used to obtain velocities for the Jakobshavn glacier with an Offset-Tracking method. Obtained results were compared with displacements obtained from the Sentinel-1 data. The comparative analysis was performed on displacements in range and azimuth directions and for maximum velocity values. Moreover, correlation plots showed that in different parts of glaciers, a comparison of obtained velocities delivers different correlation coefficients (R2) in a range from 0.52 to 0.97. The analysis showed that the scale of movements is similar from both sensors. However, Sentinel-1 data present underestimation of velocities comparing to ICEYE data. The biggest deviations between results were observed around the maximum velocities, near the Kangia Ice Fjord Bay. In the analysis the amplitude information was used as well. This research presents that data from the ICEYE microsatellites can be successfully used for monitoring glacial areas and it allows for more precise observations of displacement velocity field.
The authors wish to make the following corrections to this paper [...]
<p>Mining exploitation is associated with the occurrence of adverse environmental effects. The most serious of such effects is land subsidence. Although land subsidence can be well predicted and mitigated by several methods, nevertheless, the extraction of mineral deposits is also associated with induced seismicity. The occurrence of seismic events causes ground surface vibrations, land surface displacements and, in many cases, has a negative impact on the safety of surface infrastructure and the inhabitants of endangered areas. Despite this, the issue of induced seismicity is much less recognized and often ignored in the assessment of the negative impacts of mining exploitation.</p><p>Induced seismicity is related to stress changes in the reservoir and surrounding rock mass that may be caused by a variety of mechanisms. Consequently, the patterns of induced seismicity vary greatly over time and space for different fields or events within the same field. It is often difficult to determine the correlation between seismicity and mining precisely because of the lack of data detailing the pattern of exploitation at the various wells. As a result, the source mechanism of mining-induced tremor remains a subject of active research.</p><p>The research aimed to better identify the phenomenon of induced seismicity caused by mining operations. Research has been conducted in the area of underground copper ore mining in Poland. Firstly, we investigate the pre-and post-seismic land-surface movements following 8 mining-induced Mw 3.6-4.8 earthquakes that occurred between 2016 and 2018. We use Sentinel 1 data to derive these movements 2 weeks before and 4 weeks after the mainshock. The results of these studies show that no substantial pre-seismic surface movements are indicating the possibility of a seismic event occurring. However, the co-seismic deformation fields are quite symmetrical, the maximum land subsidence is almost 10 cm and occurs within a few days after the mainshock. In addition, the time series of post-seismic deformation shows a gradual decay and a good correspondence with the post-shock distribution.</p><p>Secondly, we use the Mogi model, assuming the elastic half-space, to invert co-seismic deformation fields and to obtain the source parameters of the mine-induced earthquakes. The spatial distribution of the epicenters indicates a correlation with the fields of mining exploitation. The results also show that the average depth of the hypocenter tremor is approx. 650 m. This corresponds to the depth of the stiff sandstone layers adjacent to the exploration. These layers accumulate the stress of post-exploitation voids. In addition, the modeling results indicate an approx. the volume of the displaced rock layers of 1.2 x 105 m3. This value shows a high correlation with the volume of post-shock troughs determined based on InSAR data.</p><p>The results of this study contribute to research into activities related to mining operations resulting in an induced-earthquake occurrence. This demonstrates InSAR's potential for quasi-constant monitoring of large-scale areas against seismic hazards caused by ongoing mining operations.</p>
<p>Keywords: ice cover; glacier dynamics; microsatellites; offset-tracking; climate changes</p><p>Radar images acquired by SAR satellites allow scientists to monitor the movements of glaciers in polar regions. Observation of these areas is significant as it provides information on the process of global warming. It also makes it possible to assess the amount of ice mass that is melting and, as a result, increasing the mean level of the global ocean. Due to high speeds and loss of consistency in glacial areas, the optimal technique for estimating glacier velocity is Offset-Tracking. Its accuracy depends on the size of the terrain pixel and can therefore increase the accuracy of the results obtained by using high-resolution images. Microsatellites open up new possibilities through high resolution imagery and short revisit time.</p><p>The study uses ICEYE products. The aim of the research was to investigate the influence of SAR image resolution on the accuracy of calculated movements in the Offset-Tracking method. Additionally, a comparison of obtained results with previous studies allowed to analyze changes in the dynamics of chosen areas. The research was carried out for 2 glaciers: Jakobshavn in Greenland and Thwaites in Antarctica. It made it possible to compare the quality of results in areas that are located in various parts of the world and moving at different dynamics. Additionally, calculations were made for Sentinel-1 SAR images for comparative analysis.&#160;</p><p>As a result of research, velocities of glaciers and their directions in periods of several days were obtained. For Thwaites glacier, daily changes in dynamics were also analyzed. Moreover, by comparing results to earlier researches which were carried out in these areas, it was possible to estimate changes in ice cover during longer timespans. In the last step, the quality and accuracy of products obtained from ICEYE and Sentinel-1 satellites were compared.&#160;</p><p>This research assesses the utility of microsatellite images for monitoring glacier movements and shows possibilities of their usage in future research.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.