HgTe quantum wells (QWs) are two-dimensional semiconductor systems that change their properties at the critical thickness d c , corresponding to the band inversion and topological phase transition. The motivation of this work was to study magnetotransport properties of HgTe QWs with thickness approaching d c , and examine them as potential candidates for quantum Hall effect (QHE) resistance standards. We show that in the case of d > d c (inverted QWs), the quantization is influenced by coexistence of topological helical edge states and QHE chiral states. However, at d ≈ d c , where QW states exhibit a graphene-like band structure, an accurate Hall resistance quantization in low magnetic fields (B ≤ 1.4 T) and at relatively high temperatures (T ≥ 1.3 K) may be achieved. We observe wider and more robust quantized QHE plateaus for holes, which suggests-in accordance with the "charge reservoir" model-a pinning of the Fermi level in the valence band region. Our analysis exhibits advantages and drawbacks of HgTe QWs for quantum metrology applications, as compared to graphene and GaAs counterparts.
Schottky barrier height and the ideality factor are established for the first time in the single phase (Ga,Mn)N using a vertical geometry device. The material has been heteroepitaxially grown on commercially available low threading dislocation density GaN:Si template. The observed above 10 M resistances already at room temperature are indicative that a nearly conductive-dislocation-free electrical properties are achieved. The analysis of temperature dependence of the forward bias I-V characteristics in the frame of the thermionic emission model yields Ti-(Ga,Mn)N Schottky barrier height to be slightly lower but close in character to other metal/GaN junctions. However, the large magnitudes of the ideality factor > 1.5 for T 300 K, point to a sizable current blocking in the structure. While it remains to be seen whether it is due to the presence of (Ga,Mn)N barrier or due to other factors which reduce the effective area of the junction, an existence of a substantial serial resistance may hold the key to explain similar observations in other devices of a corresponding structure and technological relevance.
We report the rst results of electron beam lithography processes performed on polymethyl methacrylate (PMMA) and hydrogen silsesquioxane (HSQ) resists, which have been pre-backed in vacuum at T ≤ 90For such low temperature processing the lithographical resolution is reduced as compared to standard procedures, however, the exposure contrast and adhesion to CdTe and HgTe substrates have been sucient for the fabrication of sub-µm quantum devices. Furthermore, the new method of electrical microcontact forming is proposed, based on the local melting and annealing of an indium metal layer, performed with the application of accelerated electron beam. The method has been tested for CdTe/CdMgTe quantum wells using the lithography techniques, the exposure parameters have been optimized by inspecting the morphology of annealed metal lm via the in situ imaging.
A single crystal of the U-based ternary silicide U(2)IrSi(3) was investigated by means of magnetic, resistivity and heat-capacity measurements performed in wide ranges of temperature and external magnetic fields. The results hint at the formation of a non-trivial magnetic ground state in which ferromagnetic ordering coexists with spin-glass freezing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.