Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 G protein-coupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasocon-striction, cell proliferation in cancer cells, and reproductive and metabolic functions. Activation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.
Recently, it was demonstrated that inbred strains of mice have a clearcut circadian rhythm of pineal and serum melatonin. Moreover, it is known that melatonin is involved in many immunoregulatory functions. Among them, hematopoiesis is influenced by the action of melatonin via melatonin-induced opioids on kappa-opioid receptors, which are present on stromal bone marrow cells. Therefore, the present study was carried out to investigate the presence of melatonin in the bone marrow in which immunocompetent cells are generated. Specifically, we aimed at answering the following question: are bone marrow cells involved in melatonin synthesis? In the present study, we demonstrate that (1) bone marrow cells contain high concentrations of melatonin; (2) bone marrow cells have a N-acetyltransferase activity and they express the mRNA encoding hydroxy-O-methyltransferase and (3) bone marrow cells cultured for a prolonged period exhibited high levels of melatonin. Results presented here suggest that mouse and human bone marrow and bone marrow cells are capable of de novo synthesis of melatonin, which may have intracellular and or paracrine functions.
The pineal gland is a vertebrate neuroendocrine organ converting environmental photoperiodic information into a biochemical message (melatonin) that subsequently regulates the activity of numerous target tissues after its release into the bloodstream. A phylogenetically conserved feature is increased melatonin synthesis during darkness, even though there are differences between mammals and birds in the regulation of rhythmic pinealocyte function. Membrane-bound melatonin receptors are found in many peripheral organs, including lymphoid glands and immune cells, from which melatonin receptor genes have been characterized and cloned. The expression of melatonin receptor genes within the immune system shows species and organ specificity. The pineal gland, via the rhythmical synthesis and release of melatonin, influences the development and function of the immune system, although the postreceptor signal transduction system is poorly understood. Circulating messages produced by activated immune cells are reciprocally perceived by the pineal gland and provide feedback for the regulation of pineal function. The pineal gland and the immune system are, therefore, reciprocally linked by bidirectional communication.
The pineal hormone melatonin exhibits immunomodulatory activity well documented in mammals and birds. The mechanism of melatonin action within the immune system is, however, poorly understood. In mammalian immune cells in vitro, melatonin acts mainly as an antiapoptotic, oncostatic and antiproliferative agent, and these effects are exerted via specific receptors or are related to its free radical scavenging activity. In previous studies we have found that in short-term chicken splenocyte cultures in vitro melatonin stimulated basil proliferation and inhibited that stimulated with phytohemagglutinin, a T-cell mitogen. This paper is devoted to the involvement of membrane receptors, previously characterised by us as MT2 (Mel(1b)) and Mel(1c) subtypes, in the above mentioned melatonin effects in chicken splenocyte cultures. For this purpose, in present study a nonselective melatonin receptor antagonist, luzindole, and the selective MT2 blocker, 4P-PDOT, were used. The effect of melatonin on second messengers, cyclic adenosine-3',5'-monophosphate (cAMP) and inositol-1,4,5-trisphosphate (IP(3)), involved in the regulation of proliferation, was examined. We have found that the stimulation of proliferation occurs via Mel(1c) receptor and is associated with the changes in intracellular second messengers concentration: a decrease in cAMP and an increase in IP(3). In contrast, in mitogen-activated splenocytes, melatonin-induced inhibition of proliferation is mediated by MT2 receptors and is related to cAMP accumulation, as well as a decrease in IP(3). In conclusion, we have demonstrated that the stimulatory and inhibitory effect of melatonin on chicken splenocytes in vitro, dependent on the magnitude of cell stimulation, resulted from two different subtypes of membrane receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.