The data of the study clearly indicate a role for tumor necrosis factor alpha in the studied behavior changes after experimental disc herniation in the rat. Clinical trials must be performed in order to assess if there may be a clinical use for tumor necrosis factor alpha inhibition in the treatment of sciatica due to disc herniation.
BackgroundThe physiological regulation of ciliary beat frequency (CBF) within the fallopian tube is important for controlling the transport of gametes and the fertilized ovum. Progesterone influences gamete transport in the fallopian tube of several mammalian species. In fallopian tubes isolated from cows, treatment with 20 micromolar progesterone caused a rapid reduction of the tubal CBF. The aims of this study were to establish methodology for studying fallopian tube CBF in the mouse, as it is an important model species, and to investigate if progesterone rapidly affects the CBF of mice at nM concentrations.MethodsA method to assess tubal CBF of mice was developed. Fallopian tubes were dissected and the tissue was cut in small pieces. Tissue samples with moving cilia were located under an inverted bright field microscope and held still against the bottom of a petri dish by a motorized needle system. Images were acquired over 90 minutes at 35 degrees C with a high-speed camera and used for assessing changes in the CBF in response to the addition of hormone.ResultsThe baseline CBF of the mouse fallopian tube was 23.3 +/- 3.8 Hz. The CBF was stable over at least 90 minutes allowing establishment of a baseline frequency, addition of hormone and subsequent recordings. Progesterone at concentrations of 20 micromolar and 100 nM significantly reduced the CBF by 10% and 15% respectively after 30 minutes compared with controls.ConclusionsThe present study demonstrates that the mouse, despite its small size, is a useful model for studying the fallopian tube CBF ex vivo. The rapid reduction in CBF by 100 nM progesterone suggests that gamete transport in the fallopian tube could be mediated by progesterone via a non-genomic receptor mechanism.
Background: The controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site. Rapid effects of progesterone on ciliary beat frequency have been reported in the fallopian tubes of cows, but the identity of the receptors mediating this non-genomic action of progesterone is not known. We recently identified a member of the non-genomic membrane progesterone receptor family, mPR gamma, as a candidate for mediating these actions of progesterone. Here, we investigated the possible presence of a related receptor, mPR beta, in the fallopian tubes of mice and women as well as the possible hormonal regulation of mPR beta and gamma.
Non-genomic, rapid actions of steroids have long been known, suggesting the possible presence of non-classical steroid receptors. A membrane receptor for progestins (mPR) was recently described in the spotted seatrout, and transcripts of three related receptors (alpha, beta, and gamma) were subsequently identified in other species including human and mouse. To begin exploring the roles of mPRgamma in mammals, we have generated an antibody against this receptor. The specificity of the antibody was demonstrated by both overexpression and RNA interference experiments. Using the antibody, we show that mPRgamma is expressed in female mouse reproductive tissues such as ovary and fallopian tube, and also in the lung and liver of both sexes. Immunohistochemical studies revealed that mPRgamma is associated with the apical membrane of ciliated cells facing the lumen of the fallopian tube. The presence of mPRgamma in ciliated cells of the fallopian tube was also demonstrated in human samples. Rapid effects of progesterone on ciliary beat frequency in the fallopian tube have recently been reported. Together, this suggests a common role for mPRgamma in the regulation of ciliary activity in the fallopian tube and thus gamete transport in mammals. The presence of mPRgamma in lung and liver of mice suggests that the receptor mediates the actions of progesterone outside the reproductive tract as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.