Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic callus in this species is missing. Therefore, using the immunocytochemical approach, we targeted 17 different antigens of which five were against the arabinogalactan proteins (AGP), three were against extensins, six recognised pectic epitopes and two recognised hemicelluloses. These studies were complemented by histological and scanning electron microscopy (SEM) analyses. We revealed that the characteristic cell wall components of Brachypodium embryogenic calli are AGP epitopes that are recognised by the JIM16 and LM2 antibodies, an extensin epitope that is recognised by the JIM11 antibody and a pectic epitopes that is recognised by the LM6 antibody. Furthermore, we demonstrated that AGPs and pectins are the components of the extracellular matrix network in Brachypodium embryogenic culture. Additionally, SEM analysis demonstrated the presence of an extracellular matrix on the surface of the calli cells. In conclusion, the chemical compositions of the cell walls and ECMSN of Brachypodium callus show spatial differences that correlate with the embryogenic character of the cells. Thus, the distribution of pectins, AGPs and hemicelluloses can be used as molecular markers of embryogenic cells. The presented data extends the knowledge about the chemical composition of the embryogenic callus cells of Brachypodium.
Successful germination and seedling development are crucial steps in the growth of a new plant. In this study, we investigated the course of the cell cycle during germination in relation to grain hydration in the model grass Brachypodium distachyon (Brachypodium) for the first time. Flow cytometry was performed to monitor the cell cycle progression during germination and to estimate DNA content in embryo tissues. The analyses of whole zygotic embryos revealed that the relative DNA content was 2C, 4C, 8C, and 16C. Endoreplicated nuclei were detected in the scutellum and coleorhiza cells, whereas the rest of the embryo tissues only had nuclei with a 2C and 4C DNA content. This study was accompanied by a spatiotemporal profile analysis of the DNA synthetic activity in the organs of Brachypodium embryos during germination using EdU labelling. Upon imbibition, nuclear DNA replication was initiated in the radicle within 11 h and subsequently spread towards the plumule. The first EdU-labelled prophases were observed after 14 h of imbibition. Analysis of selected genes that are involved in the regulation of the cell cycle, such as those encoding cyclin-dependent kinases and cyclins, demonstrated an increase in their expression profiles.
Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2–3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.
Effective regeneration of callus tissue into embryos and then into whole plants is essential for plant biotechnology. The embryonic potential is often low and can further decrease with time in culture, which limits the utilisation of calli for transformation procedures and in vitro propagation. In this study, we show that the loss of embryogenic potential in callus cultures of Brachypodium distachyon is progressive over time. Flow cytometry analyses indicated endoploidy levels increased in 60- and 90-day-old calli with effective loss of the 2C DNA content peak in the latter. Analysis of indolic compounds content revealed a decrease in 60- and 90-day-old calli compared to either freshly isolated explants or 30-day-old calli. Immunohistochemical analysis revealed a decrease in arabinogalactan proteins (AGP) signal with the time of culture, but extensin (EXT) epitopes either increased (JIM12 epitopes) or decreased (JIM11 epitopes). The transcript accumulation levels of AGPs and EXTs confirmed these results, with most of AGP and EXT transcripts gradually decreasing. Some chimeric EXT transcripts significantly increased on the 30th day of culture, perhaps because of an increased embryogenic potential. Selected somatic embryogenesis-related genes and cyclins demonstrated a gradual decrease of transcript accumulation for YUCCA (YUC), AINTEGUMENTA-LIKE (AIL), BABY BOOM (BBM), and CLAVATA (CLV3) genes, as well as for most of the cyclins, starting from the 30th day of culture. Notably, WUSCHEL (WUS) transcript was detectable only on the 30th and 60th day and was not detectable in the zygotic embryos and in 90-day-old calli.
This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially lactinemia, and then combinations with other phrases: pathology, prevalence, and other diseases: metabolic syndrome, polycystic ovary syndrome (PCOS). The references included in previously published review articles were also checked, and any relevant papers were included. Insulin resistanceInsulin metabolically affects excretion and regulates the metabolism of carbohydrates, lipids, and proteins through a specific low-membrane receptor, which is present on the surface of hepatocytes, adipocytes, and striated muscle cells [5][6][7]. Insulin stimulates the reduction of glucose, free fatty acids, and ketone levels [8]. The activity of insulin is also influenced by many hormones; (e.g. the growth hormone, glucocorticoids, thyroid hormones, catecholamines, androgens, parathyroid hormone, aldosterone, glucagon, or somatostatin, which acting antagonistically and reduce the activity of insulin) [9,10]. This leads to disturbances in the carbohydrate metabolism and an increase in IR in the pre-receptor, receptor, and post-receptor mechanisms [11]. In addition to the genetically determined
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.