Ionic salts containing the novel 5-amino-2-methyl-and 5-amino-1,3-dimethyltetrazolium cations with energetic anions (perchlorate, nitrate, azide and dinitramide) have been synthesized in high yields and purities and fully characterized. A full structural description by spectroscopic methods (vibrational and 15 N NMR spectroscopy) and X-ray analysis is given. Unexpectedly, salts based on the asymmetric 5-amino-1,3-dimethyltetrazolium cation have higher densities than analogue compounds containing the isomeric 5-amino-1,4-
The alkaline earth metal salts of 5,1693 vibrational (IR, Raman) and NMR spectroscopy, elemental analysis and differential scanning calorimetry (DSC). A detailed description of the crystal structures is given. In addition, the potential use of 4 and 5 in coloring pyrotechnical compositions was investigated.
The development of a red-light-emitting pyrotechnic illuminant has garnered interest from the pyrotechnics community owing to potential regulations by the United States Environmental Protection Agency (U.S. EPA) regarding the use of strontium and chlorinated organic materials. To address these environmental regulatory concerns, the development of lithium-based red-light-emitting pyrotechnic compositions of high purity and color quality is described. These formulations do not contain strontium or chlorinated organic materials. Rather, the disclosed formulations are based on a non-hygroscopic dilithium nitrogen-rich salt that serves as both oxidizer and red colorant. These formulations are likely to draw interest from the civilian fireworks and military pyrotechnics communities for further development as they both have a vested interest in the development of environmentally conscious formulations.
The reaction of cyanogen (NC-CN) with MN(3) (M=Na, K) in liquid SO(2) leads to the formation of the 5-cyanotetrazolate anion as the monohemihydrate sodium (1·1.5 H(2)O) and potassium (2) salts, respectively. Both 1·1.5 H(2)O and 2 were used as starting materials for the synthesis of a new family of nitrogen-rich salts containing the 5-cyanotetrazolate anion and nitrogen-rich cations, namely ammonium (3), hydrazinium (4), semicarbazidium (5), guanidinium (6), aminoguanidinium (7), diaminoguanidinium (8), and triaminoguanidinium (9). Compounds 1-9 were synthesised in good yields and characterised by using analytical and spectroscopic methods. In addition, the crystal structures of 1·1.5 H(2)O, 2, 3, 5, 6, and 9·H(2)O were determined by using low-temperature single-crystal X-ray diffraction. An insight into the hydrogen bonding in the solid state is described in terms of graph-set analysis. Differential scanning calorimetry and sensitivity tests were used to assess the thermal stability and sensitivity against impact and friction of the materials, respectively. For the assessment of the energetic character of the nitrogen-rich salts 3-9, quantum chemical methods were used to determine the constant volume energies of combustion, and these values were used to calculate the detonation velocity and pressure of the salts using the EXPLO5 computer code. Additionally, the performances of formulations of the new compounds with ammonium nitrate and ammonium dinitramide were also predicted. Lastly, the ICT code was used to determine the gases and heats of explosion released upon decomposition of the 5-cyanotetrazolate salts.
The generation of blue-light-emitting pyrotechnic formulations without the use of chlorine-containing compounds is reported. Suitable blue-light emission has been achieved through the generation of molecular emitting copper(I) iodide. The most optimal copper(I) iodide based blue-light-emitting formulation was found to have performances exceeding those of chlorine-containing compositions, and was found to be insensitive to various ignition stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.