Nanotechnology delivers materials and nanoparticles (NPs) with high biological potential, useful in bioengineering, nanomedicine, and human health protection. Silver nanoparticles (NPs), because of their wide spectrum of activities and physical and chemical properties, are nowadays extensively researched. However, careful studies on living organism should be performed, with strong attention to biocompatibility. Multiple cellular effects, displayed after AgNP treatments, show interesting potential of metal-based NPs, not only in bio-nanotechnology but also in molecular medicine and anticancer therapy. AgNPs are promising anticancer agents, influencing the cell cycle, inhibiting cancer proliferation, and inducing oxidative stress and propagation of programmed cellular death (apoptosis). Additionally, they protect against bacterial, fungal, and viral infections. During chemo-and radio-therapies, such antimicrobial protection will be desirable because of the decreased immunological resistance of cancer patients. In conclusion, AgNPs often present in the human environment should be studied for novel findings and better characteristic. This article discusses advantages of AgNP's "eco-friendly" production, followed by green synthesis, with particular consideration of antimicrobial and anticancer properties. Cellular processes, induced after AgNP treatments, are focused on antiproliferative, pro-oxidative, and pro-apoptotic activities of NPs.
Coronavirus disease 2019 (COVID-19) is associated with systemic inflammation. A wide range of adipokines activities suggests they influence pathogenesis and infection course. The aim was to assess concentrations of chemerin, omentin, and vaspin among COVID-19 patients with an emphasis on adipokines relationship with COVID-19 severity, concomitant metabolic abnormalities and liver dysfunction. Serum chemerin, omentin and vaspin concentrations were measured in serum collected from 70 COVID-19 patients at the moment of admission to hospital, before any treatment was applied and 20 healthy controls. Serum chemerin and omentin concentrations were significantly decreased in COVID-19 patients compared to healthy volunteers (271.0 vs. 373.0 ng/ml; p < 0.001 and 482.1 vs. 814.3 ng/ml; p = 0.01, respectively). There were no correlations of analyzed adipokines with COVID-19 severity based on the presence of pneumonia, dyspnea, or necessity of Intensive Care Unit hospitalization (ICU). Liver test abnormalities did not influence adipokines levels. Elevated GGT activity was associated with ICU admission, presence of pneumonia and elevated concentrations of CRP, ferritin and interleukin 6. Chemerin and omentin depletion in COVID-19 patients suggests that this adipokines deficiency play influential role in disease pathogenesis. However, there was no relationship between lower adipokines level and frequency of COVID-19 symptoms as well as disease severity. The only predictive factor which could predispose to a more severe COVID-19 course, including the presence of pneumonia and ICU hospitalization, was GGT activity.
The impact of the addition of the nanofiller -halloysite -on the mechanical, physicochemical and biological properties of a nanocomposite, in which thermoplastic polyurethane fulfilled the role of the matrix was investigated. The nanocomposite was obtained by extrusion in three variants with 1, 2 and 3 wt % halloysite. The nanostructure of the obtained materials was confirmed using Atomic Force Microscopy (AFM). Based on the mechanical tests carried out, it was proven that the obtained nanocomposites were characterized by a tensile modulus greater than the polyurethane constituting the matrix. The density and hardness of the nanocomposites had changed within error limits compared to unmodified polyurethane. Biological tests showed no cytotoxicity of all the tested materials to normal human dermal fibroblasts (NHDF). Degradation tests were carried out in artificial plasma and showed that samples with 2 wt % halloysite addition had the best ratio of tensile strength and elongation at break to elasticity modulus.
The aim was to assess whether fibroblast growth factor 21 (FGF-21) and adiponectin influence intrahepatic cholestasis of pregnancy (ICP) pathogenesis and whether ursodeoxycholic acid (UDCA) has an impact on their levels. 50 pregnant women with ICP (ICP PW), 50 with uncomplicated pregnancy (HPW) and 50 healthy nonpregnant women (HW) were included. In ICP PW the first blood sample was drawn at the time of diagnosis, while in HPW it was drawn in the 28 th week of pregnancy. The next blood samples were drawn in the 32 nd and 36 th week of pregnancy and one day after delivery. UDCA was administered when ICP was diagnosed. In ICP PW serum FGF-21 concentration was the lowest at the time of diagnosis with an evident increase after UDCA administration. Serum FGF-21 levels were significantly higher in ICP PW than in HPW from the first to the last measurement. There was a negative association between adiponectin and bile acids (BAs) levels in the later stage of pregnancy in ICP PW. Up-regulated FGF-21 serum levels in ICP patients compared to HPW persisted after delivery, suggesting its role in disease pathophysiology. The negative association between serum adiponectin and BAs of the later stage of pregnancy may suggest its role in regulation of BAs concentration. UDCA exerts a beneficial effect on insulin sensitivity and up-regulates FGF-21 in ICP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.