Sustainable development requires ensuring the mobility of residents and must not cause deterioration of the quality of the environment in the selected area. The purpose of this study is to verify if the construction of a cross-regional highway through the city centre affected air quality in the neighbourhood of a newly built road. Air quality was assessed based on measurements of concentrations of nitrogen dioxide, which is considered to be typical for automotive sources air pollution. The spectrophotometric method with passive sampling was used in the 24 h NO2 measurements. The calculated mean NO2 concentrations in the periods before and after road construction were within the ranges of 23.2–31.9 μg/m3 and 22.3–28.9 μg/m3, respectively. The relative NO2 concentrations determined in the study for 10 out of 11 sampling points were lower than the unity, including 5 points markedly lower (0.82–0.89). The obtained results indicate that the construction of the new artery by the city centre, using appropriate technical solutions and traffic organization (tunnel, noise barriers, roundabouts, speed limit) likely contributed to an overall reduction in NO2 concentrations. The presented solution may serve as an example for other cities struggling with problems of low air quality associated with inefficient transportation systems.
Studies on adverse health effects associated with air pollution mostly focus on individual pollutants. However, the air is a complex medium, and thus epidemiological studies face many challenges and limitations in the multipollutant approach. NO2 and PM2.5 have been selected as both originating from combustion processes and are considered to be the main pollutants associated with traffic; moreover, both elicit oxidative stress responses. An answer to the question of whether synergistic or antagonistic health effects of combined pollutants are demonstrated by pollutants monitored in ambient air is not explicit. Among the analyzed studies, only a few revealed statistical significance. Exposure to a single pollutant (PM2.5 or NO2) was mostly associated with a small increase in non-accidental mortality (HR:1.01–1.03). PM2.5 increase of <10 µg/m3 adjusted for NO2 as well as NO2 adjusted for PM2.5 resulted in a slightly lower health risk than a single pollutant. In the case of cardiovascular heart disease, mortality evoked by exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed an antagonistic effect on health risk compared to the single pollutant. Both short- and long-term exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed a synergistic effect appearing as higher mortality from respiratory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.