During physical exercise, the absorbed dose of air pollutants increases. Acute effects of exposure to air pollutants during exercise in healthy young adults remain poorly documented. The aim of this study was to assess the acute responses in fractionated exhaled nitric oxide (FeNO) and blood pressure to air pollution exposure during exercise in young adults with different physical activity levels (low or high). In this study, 76 healthy university students participating in physical activity classes (low level of physical activity) and attending sports training (high level of physical activity) completed two indoor exercise trials when air pollutant concentrations were high (exposure trial) and when the quality of the air was good (control trial). We monitored indoor particulate matter with diameter <10 µm and <2.5 µm (PM10 and PM2.5) and outdoor PM10, nitric oxides (NO2, NOx, NO), and sulfur dioxide (SO2) concentrations. Systolic and diastolic blood pressure (SBP and DBP), heart rate (HR), oxygen saturation (SpO2), and FeNO were measured at baseline and after 45–60 min of physical activity. There were no significant differences between physiological responses to training performed under different exposure conditions in blood pressure, HR, and SpO2. Significant positive correlations between post-exercise ΔFeNO during exposure trials and ambient air pollutants were found. FeNO increase during the exposure trial was associated with a higher physical activity level and higher outdoor PM10 and NO2 concentrations. In young and healthy adults, some differences in physiological responses to physical activity between polluted and control environments could be observed. Participants with a high physical activity level were more likely to have an increase in FeNO after exercise in a polluted environment but not after the control exercise trials.
Highly intense and chronic physical activity may cause an inflammatory process in the airways. The inflammatory process in the respiratory system can be measured either by the spirometry test and exhaled nitric oxide. The aim of this study was to assess the effect of different levels of physical activity on fractional exhaled nitric oxide (FeNO) and spirometry parameters. Fifty healthy students (volunteers) who were participating in physical activity classes (low level of physical activity) and attending sports training (high and medium level of physical activity) completed two indoor exercise training two to three weeks apart. FeNO was measured twice, at baseline and after 45–60 min of exercise followed by spirometry. There was no significant difference in FeNO values and spirometry parameters between the groups with different physical activity. However, students with the highest level of physical activity presented a higher and significant variance of FeNO levels in comparison to students with lower physical activity. Healthy young adults (professional sportspersons) have a higher internal variability of FeNO. That suggests the initial ongoing inflammatory process in the airways. Any level of physical activity does not affect spirometry parameters before and after training in young healthy adults.
Ambient air pollution is a major environmental threat to human health. The acute effects of exposure to ambient air pollution during physical exercise may depend on allergy status. The aim of the study was to assess the acute respiratory responses to air pollution exposure during physical training in young adults with and without allergies. The studied group included 71 healthy young adults (n = 16 with allergy and n = 55 without allergy). Students completed two indoor physical training trials lasting 45–60 min: when air pollutants concentrations were high (exposure trial) and low (control trial). During each trial, we monitored outdoor and indoor environmental conditions. Participants performed spirometry at baseline and directly after the exercise. Exercise during exposure trials led to a small decrease in the percentage of predicted forced expiratory volume in 1 s (FEV1 ref). Only during the control trials did the FEV1/forced vital capacity quotient (FEV1/FVC) statistically significantly increase. Moreover, just in the allergy group, there were statistically significant negative correlations between post-exercise FEV1/FVC change and 3 h average outdoor particulate matter with aerodynamic diameter <10 µm (PM10) and nitrogen dioxide (NO2) concentrations (PM10: r = −0.54, p = 0.02, NO2: r = −0.60, p = 0.02). In young and healthy adults, sports training under exposure to high levels of ambient air pollutants leads to a small decrease in FEV1. The allergy might be a modifying factor in the respiratory responses to air pollution. Post-exercise decrease in FEV1/FVC was related to pre-exercise 3 h averages of PM10 and NO2 only in people with ever-diagnosed upper-respiratory allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.