Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract.
Potato protein is recognized as one of the most valuable nonanimal proteins due to the high content of essential amino acids. So far, it has not been used in human nutrition on a large scale due to technological limitations regarding its acquisition. In this study, the protein fraction of potato juice was concentrated with the use of membrane separation. The obtained potato juice protein concentrate (PJPC) was characterized in terms of nutritional value and biological activity, and the amino acid composition, mineral content, and antioxidant properties were determined. Moreover, in vitro cytotoxic activity against cancer cells of the gastrointestinal tract was investigated. The results of the present study indicate that PJPC is an excellent source of lysine and threonine, while leucine is its limiting amino acid, with an amino acid score (AAS) of 65%. Moreover, PJPC contains substantial amounts of Fe, Mn, K, and Cu. As demonstrated experimentally, PJPC is also characterized by higher antioxidant potential than potato itself. Biological activity, however, is not limited to antioxidant activity alone. Cytotoxicity studies using a gastric cancer cell line (Hs 746T), a colon cancer cell line (HT-29), and human colon normal cells (CCD 841 CoN) proved that PJPC is characterized by selective activity against cancer cells. It can thus be concluded that the developed method of producing protein concentrate from potato juice affords a product with moderate nutritional value and interesting biological activity.
Summary
Soybean sprouts cultured in 20 mm FeSO4 were introduced into corn snacks (1.75–3.50%) to supplement iron. The effect of extrusion process on the ferritin iron stability and on product quality was studied. Iron stability in these fortified snacks depended mainly on feed moisture levels, with the best results seen when the feed moisture and temperature were 12% and 110 °C, respectively. Lower feed moisture was beneficial to hardness, expansion ratio and bulk density, while lower temperature increased snack hardness and density, while worsening the expansion ratio. The snacks’ water absorption was strongly and directly dependent on the temperature, while their solubility mainly depended inversely on feed moisture. All of the variables tested altered the colour of the snacks. The conditions that were best for producing the ferritin‐fortified snacks – 12% feed moisture, and temperature equal than or less to 140 °C – may yield a product with the desired quality features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.