Osteoporosis is more common in chronic alcoholics than in age-matched controls. Possible aetiological factors are: malabsorption of calcium and vitamin D; liver disease and abnormal parathyroid function. The possibility that alcohol may directly affect osteoblastic function has, however, received little attention. We measured plasma osteocalcin, a protein synthesised specifically by osteoblasts, in chronic alcoholics. Our data show that these have low plasma osteocalcin but normal calcium, magnesium and parathormone, which suggest that alcohol may be directly toxic to osteoblasts.
Oxidative stress and inflammatory reaction play critical roles in ischemia/reperfusion (I/R) injury in the brain. β-carotene (βCAR) is a naturally occurring pigment present in fruits and vegetables that expresses antioxidant and anti-inflammatory activities. This study was conducted to investigate the involvement of Bcl2/Bax and NF-κB signaling pathways in the potential protective role of βCAR against brain injury in a middle cerebral artery occlusion (MCAO) rat model. A focal brain ischemia model was created for 2 h, followed by reperfusion. Rats were given 10 and 20 mg/kg of βCAR for 7 days orally before induction of ischemia, at the start of reperfusion, and 3 days after ischemia. Scores of neurological deficit were rated 24 h after induction of ischemia. Motor coordination and spontaneous coordinate activities were assessed using rotarod and activity cage, respectively. After 2 h of the last dose, the animals were killed and their brains were extracted for further examinations. The results of the study show that βCAR diminished the score of neurological deficits and ameliorated motor coordination, balance, and locomotor activity in the I/R control group. Further, βCAR resulted in diminution of malondialdehyde (MDA) and augmentation of reduced glutathione (GSH) contents, as well as the elevation of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) enzyme activities in the brain homogenates of I/R rats. βCAR treatment significantly reduced nuclear factor kappa B (NF-κB) brain content and myeloperoxidase (MPO) activity and ameliorated the histological alterations in the brain tissues. βCAR significantly suppressed Bcl-2-associated X protein (Bax) and caspase-3 expression, as well as upregulated B-cell lymphoma-2 (Bcl-2) expression, suggesting a neuroprotective potential via downregulating NF-kB and protecting the rat brain against the I/R-associated apoptotic injury.
Bioassay-guided fractionation of the organic extract of the Red Sea sponge Xestospongia testudinaria led to the isolation of 13 compounds including two new sterol esters, xestosterol palmitate (2) and xestosterol ester of l6′-bromo-(7′E,11′E,l5′E)-hexadeca-7′,11′,l5′-triene-5′,13′-diynoic acid (4), together with eleven known compounds: xestosterol (1), xestosterol ester of 18′-bromooctadeca-7′E,9′E-diene-7′,15′-diynoic acid (3), and the brominated acetylenic fatty acid derivatives, (5E,11E,15E,19E)-20-bromoeicosa-5,11,15,19-tetraene-9,17-diynoic acid (5), 18,18-dibromo-(9E)-octadeca-9,17-diene-5,7-diynoic acid (6), 18-bromooctadeca-(9E,17E)-diene-7,15-diynoic acid (7), 18-bromooctadeca-(9E,13E,17E)-triene-7,15-diynoic acid (8), l6-bromo (7E,11E,l5E)hexadeca-7,11,l5-triene-5,13-diynoic acid (9), 2-methylmaleimide-5-oxime (10), maleimide-5-oxime (11), tetillapyrone (12), and nortetillapyrone (13). The chemical structures of the isolated compounds were accomplished using one- and two-dimensional NMR, infrared and high-resolution electron impact mass spectroscopy (1D, 2D NMR, IR and HREIMS), and by comparison with the data of the known compounds. The total alcoholic and n-hexane extracts showed remarkable cytotoxic activity against human cervical cancer (HeLa), human hepatocellular carcinoma (HepG-2), and human medulloblastoma (Daoy) cancer cell lines. Interestingly, the dibrominated C18-acetylenic fatty acid (6) exhibited the most potent growth inhibitory activity against these cancer cell lines followed by Compounds 7 and 9. Apparently, the dibromination of the terminal olefinic moiety has an enhanced effect on the cytotoxic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.