Electroencephalography (EEG) signals have great impact on the development of assistive rehabilitation devices. These signals are used as a popular tool to investigate the functions and the behavior of the human motion in recent research. The study of EEG-based control of assistive devices is still in early stages. Although the EEG-based control of assistive devices has attracted a considerable level of attention over the last few years, few studies have been carried out to systematically review these studies, as a means of offering researchers and experts a comprehensive summary of the present, state-of-the-art EEG-based control techniques used for assistive technology. Therefore, this research has three main goals. The first aim is to systematically gather, summarize, evaluate and synthesize information regarding the accuracy and the value of previous research published in the literature between 2011 and 2018. The second goal is to extensively report on the holistic, experimental outcomes of this domain in relation to current research. It is systematically performed to provide a wealthy image and grounded evidence of the current state of research covering EEG-based control for assistive rehabilitation devices to all the experts and scientists. The third goal is to recognize the gap of knowledge that demands further investigation and to recommend directions for future research in this area.
Electromyography (EMG)-based control is the core of prostheses, orthoses, and other rehabilitation devices in recent research. Nonetheless, EMG is difficult to use as a control signal given the complex nature of the signal. To overcome this problem, the researchers employed a pattern recognition technique. EMG pattern recognition mainly involves four stages: signal detection, preprocessing feature extraction, dimensionality reduction, and classification. In particular, the success of any pattern recognition technique depends on the feature extraction stage. In this study, a modified time-domain features set and logarithmic transferred time-domain features (LTD) were evaluated and compared with other traditional time-domain features set (TTD). Three classifiers were employed to assess the two feature sets, namely linear discriminant analysis (LDA), k nearest neighborhood, and Naïve Bayes. Results indicated the superiority of the new time-domain feature set LTD, on conventional time-domain features TTD with the average classification accuracy of 97.23 %. In addition, the LDA classifier outperformed the other two classifiers considered in this study.
EMG based control becomes the core of the prostheses, orthoses and rehabilitation devices in the recent research. Though the difficulties of using EMG as a control signal due to the complexity nature of this signal, the researchers employed the pattern recognition technique to overcome this problem. The EMG pattern recognition mainly consists of four stages; signal detection and preprocessing feature extraction, dimensionality reduction and classification. However, the success of any pattern recognition technique depends on the feature extraction and dimensionality reduction stages. In this paper time domain (TD) with 6 th order auto regressive (AR) coefficients features and three techniques of dimensionality reduction; principal component analysis (PCA), uncorrelated linear discriminant analysis (ULDA) and fuzzy neighborhood preserving analysis with QR decomposition (FNPA-QR) were demonstrated. The EMG data were recorded from the below knee muscles of ten intact-subjects. Four ankle joint movements are classified using three classifiers; LDA, k-NN and MLP. The results show the superiority of TD&6 th AR with FNPA-QR and k-NN combination with (96.20% ± 4.1) accuracy.
A collaborative robot, or cobot, enables users to work closely with it through direct communication without the use of traditional barricades. Cobots eliminate the gap that has historically existed between industrial robots and humans while they work within fences. Cobots can be used for a variety of tasks, from communication robots in public areas and logistic or supply chain robots that move materials inside a building, to articulated or industrial robots that assist in automating tasks which are not ergonomically sound, such as assisting individuals in carrying large parts, or assembly lines. Human faith in collaboration has increased through human–robot collaboration applications built with dependability and safety in mind, which also enhances employee performance and working circumstances. Artificial intelligence and cobots are becoming more accessible due to advanced technology and new processor generations. Cobots are now being changed from science fiction to science through machine learning. They can quickly respond to change, decrease expenses, and enhance user experience. In order to identify the existing and potential expanding role of artificial intelligence in cobots for industrial applications, this paper provides a systematic literature review of the latest research publications between 2018 and 2022. It concludes by discussing various difficulties in current industrial collaborative robots and provides direction for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.