In this paper, we propose a spectral projection of a regularized Boussinesq system for wave propagation on the surface of a fluid. The spectral method is based on the use of Legendre polynomials, and is able to handle time-dependent Dirichlet boundary conditions with spectral accuracy. The algorithm is applied to the study of undular bores, and in particular to the onset of wave breaking connected with undular bores. As proposed in [2], an improved version of the breaking criterion recently introduced in [5] is used. This tightened breaking criterion together with a careful choice of the relaxation parameter yields rather accurate predictions of the onset of breaking in the leading wave of an undular bore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.