The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quantity connected to the evolution of the tangent velocity at the free surface. The equation for the tangent velocity is first derived for the full Euler equations in both two and three dimensional flows, and in both cases, it gives rise to an approximate balance law in the Green-Naghdi theory which turns out to be identical to the fourth conservation law for this system.
The waveheight change in surface waves with a sufficiently slow variation in depth is examined. Using a new formulation of the energy flux associated to waves modeled by the Korteweg-de Vries equation, a system of three coupled equations is derived for the determination of the local wave properties as waves propagate over gently changing depth. The system of equations is solved numerically, and the resulting shoaling curves are compared to previous results on long wave shoaling.
The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected.In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling.One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.2010 Mathematics Subject Classification. 35L65, 76B15, 76B25.
The work on the thesis started in August 2012. The working environment has been the Department of Mathematics in Bergen. The work supervised by Prof. Henrik Kalisch from the Department of Mathematics at the University of Bergen. The thesis consists of two parts. General background information and a summary of the papers are found in Part I of the thesis. Part II consists of 4 papers written during the work with the thesis. The titles, authors and publishers of these papers are:
In this paper, we propose a spectral projection of a regularized Boussinesq system for wave propagation on the surface of a fluid. The spectral method is based on the use of Legendre polynomials, and is able to handle time-dependent Dirichlet boundary conditions with spectral accuracy. The algorithm is applied to the study of undular bores, and in particular to the onset of wave breaking connected with undular bores. As proposed in [2], an improved version of the breaking criterion recently introduced in [5] is used. This tightened breaking criterion together with a careful choice of the relaxation parameter yields rather accurate predictions of the onset of breaking in the leading wave of an undular bore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.