A novel technique that uses polymer nanoparticles as pseudostationary phase in capillary electrochromatography with electrospray ionization mass spectrometry detection is described. A continuous full filling technique in which the nanoparticles were suspended in the entire electrolyte volume as well as a conventional partial filling technique is presented. No nanoparticles entered the mass spectrometer, which was fitted with an orthogonal electrospray interface, despite the continuous flow of nanoparticles into the interface. Nanoparticles (average diameter 160 nm) were prepared from methacrylic acid, methyl methacrylate, and trimethylolpropane trimethacrylate by utilizing a precipitation polymerization technique. Salbutamol, nortriptyline, and diphenhydramine were used as analytes. The interaction between analytes and nanoparticles was found to be predominantly ionic.
We present a new method for separation of enantiomers with high-field asymmetric waveform ion mobility spectrometry (FAIMS), coupled to mass spectrometric detection. Upon addition of an appropriate chiral reference compound to the analyte solution and subsequent ionization of the solution by electrospray ionization, analyte enantiomers formed diastereomeric complexes, which were potentially separable by FAIMS. The methodology being developed is intended to be general, but here amino acid analytes are specifically considered. In the examples presented herein, six pairs of amino acid enantiomers were successfully separated as metal-bound trimeric complexes of the form [MII(L-Ref)2(D/L-A)-H]+, where MII is a divalent metal ion, L-Ref is an amino acid in its L form acting as chiral reference compound, and A is the amino acid analyte. For example, D- and L-tryptophan were separated in FAIMS as [NiII(L-Asn)2(D-Trp)-H]+ and [NiII(L-Asn)2(L-Trp)-H]+. As FAIMS separation typically takes place over a time scale of only a few hundred milliseconds, the presented separation method opens new possibilities for rapid analysis of one analyte enantiomer in the presence of the other enantiomer. Preliminary quantification results are presented, which suggest that fast and sensitive quantitative chiral analyses can be performed with FAIMS. Method limitations are discussed in terms of diverse phenomena, which are not yet understood.
Highly efficient reversed-phase capillary electrochromatography (CEC) separations (plate numbers up to 700 000/m), with electrospray ionization mass spectrometry detection were achieved utilizing novel dextran-coated polymer nanoparticles as a pseudostationary phase. A continuous full filling (CFF) technique in which nanoparticles are continuously introduced into the capillary was employed for separation of neutral analytes (dialkyl phthalates), utilizing an orthogonal electrospray interface to prevent nanoparticles from entering the mass spectrometer. CFF-CEC benefits from that an entirely fresh column is employed for every analysis, avoiding carryover effects associated with stationary-phase contamination. The highly efficient separations obtained were accomplished by optimizing the organic modifier concentration in the electrolyte and by using a high nanoparticle concentration (5 mg/mL), to improve interparticle mass transfer and gain sufficient retention. Nanoparticles, with an average diameter of 600 nm, were prepared by polymerization of methacrylic acid and trimethylolpropane trimethacrylate, which in turn were coated with dextran. These nanoparticles formed stable suspensions in electrolytes having broad ranges of polarities, enabling straightforward optimization of the reversed-phase conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.