Additive Manufacturing (AM) allows for great design freedom compared to conventional manufacturing. This is very attractive for the aerospace industry in which AM could contribute to lightweight designs and thereby reduce fuel consumption, increase payload and extend flight range. The fatigue behaviour for rough as-built AM surfaces has previously been characterized with constant amplitude testing but in aerospace applications, most parts are exposed to variable amplitude loading. The fatigue behaviour for variable amplitude is not always consistent with the behaviour for constant amplitude due to effects of overloads and local plastic deformations. Therefore, variable amplitude loading behaviour of laser sintered and electron beam melted Ti6Al4V, with rough as-built surfaces have been investigated in this study using the Short-FALSTAFF (Fighter Aircraft Loading STAndard For Fatigue) load sequence. The predicted and the experimental fatigue life was overall consistent even though most experimental results exceeded the predicted life, especially for the laser sintered
Light weight metal parts produced with additive manufacturing have gained increasing interest from the aerospace industry in recent years. However, light weight parts often require thin walls which can have different material properties compared to thick bulk material. In this work, the fatigue properties of Ti-6Al-4 V produced by electron beam powder bed fusion have been investigated for samples with three different wall thicknesses ranging from 1.3 to 2.7 mm and in three different directions; 0 , 45 , and 90 relative to the build plate. Generally, the 90 specimens show worse fatigue life compared to both 0 and 45 . It was found that the fatigue strength is lower for thin samples compared to thicker samples when the stress is calculated from nominal thickness or calliper measurements. However, since materials produced by electron beam powder bed fusion often have a rough as-built surface, the load bearing area is not easy to determine. In this paper, four different methods for determining the load bearing area are presented. It is shown that if the surface roughness is considered when calculating the stress levels, the influence from specimen thickness decreases or even disappears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.