Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol.
Mannose-binding proteins like the macrophage mannose receptor (MR), the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose-binding lectin (MBL) play crucial roles in both innate and adaptive immune responses. Immunoglobulin fusion proteins of the P-selectin glycoprotein ligand-1 (PSGL-1/mIgG(2b)) carrying mostly O-glycans and, as a control, the α1-acid glycoprotein (AGP/mIgG(2b)) carrying mainly N-linked glycans were stably expressed in the yeast Pichia pastoris. Pichia pastoris-produced PSGL-1/mIgG(2b) was shown to carry O-glycans that mediated strong binding to mannose-specific lectins in a lectin array and were susceptible to cleavage by α-mannosidases including an α1,2- but not an α1,6-mannosidase. Electrospray ionization ion-trap mass spectrometry confirmed the presence of O-glycans containing up to nine hexoses with the penta- and hexasaccharides being the predominant ones. α1,2- and α1,3-linked, but not α1,6-linked, mannose residues were detected by (1)H-nuclear magnetic resonance spectroscopy confirming the results of the mannosidase cleavage. The apparent equilibrium dissociation constants for binding of PNGase F-treated mannosylated PSGL-1/mIgG(2b) to MR, DC-SIGN and MBL were shown by surface plasmon resonance to be 126, 56 and 16 nM, respectively. In conclusion, PSGL-1/mIgG(2b) expressed in P. pastoris carried O-glycans mainly comprised of α-linked mannoses and with up to nine residues. It bound mannose-specific receptors with high apparent affinity and may become a potent targeting molecule for these receptors in vivo.
The influence of carbonic anhydrase (CA) on the CO2 absorption rate and CO2 load in aqueous blends of the amino acid ionic liquid pentaethylenehexamine prolinate (PEHAp) and methyl diethanolamine (MDEA) was investigated and compared to aqueous monoethanolamine (MEA) solutions. The aim was to identify blends with good enzyme compatibility, several fold higher absorption rates than MDEA and superior desorption potential compared to MEA. The blend of 5% PEHAp and 20% MDEA gave a solvent with approximately 5-fold higher initial absorption rate than MDEA and a 2-fold higher regeneration compared to MEA. Experiments in a small pilot absorption rig resulted in a mass transfer coefficient (KGa) of 0.48, 4.6 and 15 mol (m 3 s mol fraction)-1 for 25% MDEA, 5% PEHAp 20% MDEA and 25% MEA, respectively. CA could maintain approximately 70% of its initial activity after 2 h incubation in PEHAp MDEA blends. Integration of CA with amine-based absorption resulted in a 31.7% increase in mass of absorbed CO2 compared to the respective non-enzymatic reaction at the optimal solvent: CA ratio and CA load. Combining novel blends and CA can offer a good compromise between capital and operating costs for conventional amine scrubbers, which could outperform MEA-based systems.
a b s t r a c tEnzymatically liquefied sweet sorghum stalks and beet molasses were evaluated for butyrate production using Clostridium tyrobutyricum in 1 L scale fed-batch fermentations. The hydrolysates used for the fermentations were prepared separately by liquefying the sorghum stalks at 50 • C, pH 5.0 for 18 h, with 30% (w/v) DM content using the enzyme preparation Cellic ® CTec2 at an activity of 26.5 FPU/g DM. To enhance sucrose consumption, the fermentations were supplemented with invertase at an activity equivalent to 8.3 U/g DM. With the hydrolysate as the feedstock, a butyrate concentration of 37.2 ± 0.8 g/L, a productivity of 0.86 ± 0.02 g/L h and a yield of 0.39 ± 0.02 g/g (p = 0.05) consumed sugars were obtained. Finally, a butyrate concentration of 58.8 g/L, a productivity of 1.9 g/L h, a butyrate yield of 0.52 g/g consumed sugars and a dry cell mass concentration of 15.7 g/L were obtained with fed-batch cultivation and a constant feed consisting of 64% sorghum hydrolysate juice and 36% molasses. Evidence for inducible saccharolytic activity was also proven, as the cellulase activity in the culture supernatant was found more than double during feed with limiting sugar concentrations. The present study clearly demonstrates that combinations of low cost raw materials can be used for efficient butyrate production, also without cell immobilization.
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented.OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays.Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect.Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.