Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol.
An ecofriendly approach for the synthesis of plastic biomaterials based on renewable materials suitable for 3D printing application or other applications has been developed. The material was prepared from native (microcrystalline) or amorphous cellulose, citric acid, and glycerol or ethylene glycol, by a pretreatment at 40 °C and a curing at 175 °C for 1 h. The results showed that tensile properties and the water absorption level of the material were acceptable. The highest strain at break (14%) was obtained from materials made of 10% amorphous cellulose with 90% glycerol/citric acid. It had a maximum stress at 37 MPa. Moreover, materials were without ash content. Possible applications of the material in 3D-printers were discussed. In addition, application of mechanical pulp and wood powder into novel plastic material production was discussed. Foaming during curing might be a problem for this type of material, but this can be avoided by using amorphous cellulose in the recipe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.