In this study, the characterisation and composition of Fe@Au NPs were discussed. Au-coated Fe core-shell is a type of nanoparticle that contains a magnetic Fe NPs core with a fine layer of Au NPs synthesised by the micro-emulsion method. These Fe@Au NPs are characterised by Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (TEM) and UV-Visible Spectrophotometer. The best result and the smallest nanosize was obtained at a temperature of 38°C and HAuCl4.3H2O Volume 200mg. The size of Fe@Au NPs was 63.65 nm, the Fe NP’s core diameter was 32.47nm and the Au NP’s shell thickness was approximately 31.18 nm. Optimum results mention that temperature and the HAuCl4.3H2O volume play a great role in the formation of small, monodisperse Fe@Au NPs for future use as a drug delivery means to treat different types of cancer.
Drug delivery using nanocarriers is recommended to decrease the drug amount. To improve the different therapeutic characteristics of curcumin (CU) such as solubility, bioavailability, maintenance endorsement, and make it a promising, successful antitumor drug used for prostate cancer treatment. It was introduced to folate decorated chitosan (CS) coated Fe@Au NPs (FA-CU-CS-Fe@Au NPs). Fe@Au nanoparticle contains magnetic Fe NP's core with a fine layer of Au NP's synthesized using the method Pulsed, Laser, Ablation in Liquid (PLAL). These Fe@Au NP's characterized by UV-Visible Spectrophotometer, High-Resolution, Transmission Electron Microscopy, (HRTEM), and Field Emission Scanning, Electron, Microscopy (FESEM). The smallest nanosize and the best result was obtained at different laser wavelength (532, 1064) nm. The mean size gained of Fe@Au NPs were (67.65, 77.88) nm. Obtained results exhibited that the laser wavelength plays a key role in the size, and dispersity of Fe@Au NPs. CU loaded FA-CS-Fe@Au NPs MTT assay on human prostate cancer cell line (PC3) proved that CU cytotoxicity can improve when they are loaded on (FA-CS-Fe@Au NPs) when comparing it with free CU.
Fe@Au is a type of nanoparticle that contains magnetic Fe NPs core with a fine layer of Au NPs synthesized using the Pulsed Laser Ablation in Liquid (PLAL) Method. These Fe@Au NPs characterized by Atomic Force Microscope (AFM), Field Emission Scanning Electron Microscopy (FESEM), and UV-Visible Spectrophotometer. The result was obtained at different laser fluences (1.9, 2.2, and 2.5) J/cm2 with fixed pulse duration 5 ns, wavelength 532nm and number of pulse equal 100 pulsed. The obtained mean size of Fe@Au NPs at laser fluence (1.9, 2.2, and 2.5) J/cm2 was (63.65, 32.47 and 31.18) nm respectively. UV-Visible Spectrophotometer carves was showed a redshift toward longer wavelength by increasing particle size. Obtained results exhibited that the laser fluence plays a key role in the size, and dispersity of Fe@Au NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.