Recent advances in high-speed networks have made micro-electro-mechanical systems (MEMS) find some niche applications in tunable optical devices. Indium phosphide (InP)-based MEMS have an inherent advantage of being direct band gap as compared to silicon and can thus be used in MEMS structures with light emission/detection capability. In this paper, we report an in-depth study using nanoindentation to determine the mechanical properties of InP free-standing structures that could be incorporated in optical MEMS. The fabrication process for InP-based cantilever beams and membranes is also reported. Young's modulus of the material is determined from both loading and unloading of the InP cantilever beam through a bending test. We also discuss the deformation behaviour of the InP cantilever beam. Indentation on an InP substrate was conducted using a spherical indenter of known radius, in addition to the conventional Berkovich tip. The results were compared with ideal analytical methods. Experiments were also carried out to determine Young's modulus and hardness using continuous stiffness mode (CSM) tests. In addition, as a benchmark, experiments on silicon and sapphire substrates are also discussed. The results show good agreement in the mechanical properties obtained through different experiments.
We present a method for the design and fabrication of InPbased free-standing microelectromechanical systems structures, which include microcantilever beams and Fabry-Perot membranes. The membrane is designed to satisfy both mechanical and optical requirements for a wavelength division multiplexing device and micro-Raman spectroscopy technique is used to evaluate surface stresses. The membrane profile is measured using a white-light interferometry technique, and the effect of the structure geometry on residual stress formation is discussed. From the results obtained, we propose a novel filter design that shows minimum surface profile deviation and stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.