Rheumatoid arthritis (RA) is characterized by hyperplastic pannus formation mediated by activated synovial fibroblasts (RASFs) that cause joint destruction. We have shown earlier that RASFs exhibit resistance to apoptosis, primarily as a result of enhanced expression of myeloid cell leukemia-1 (Mcl-1). In this study, we discovered that ursolic acid (UA), a plant-derived pentacyclic triterpenoid, selectively induces B-cell lymphoma 2 homology 3-only protein Noxa in human RASFs. We observed that UA-induced Noxa expression was followed by a consequent decrease in Mcl-1 expression in a dose-dependent manner. Subsequent evaluation of the signaling pathways showed that UA-induced Noxa is primarily mediated by the JNK pathway in human RASFs. Chromatin immunoprecipitation (IP) studies into the promoter region of Noxa indicated the role of transcription factor specificity protein 1 in JNK-mediated Noxa expression. Furthermore, the results from IP studies and proximity ligation assays indicated that UA-induced Noxa colocalizes and associates with Mcl-1 to prime it for proteasomal degradation through K-linked ubiquitination by the selective recruitment of Mcl-1 ubiquitin ligase E3, a homologous to E6-associated protein C terminus domain-containing E3 ubiquitin ligase. These findings unveil a novel mechanism of inducing apoptosis in RASFs and a potential adjunct therapeutic strategy of regulating synovial hyperplasia in RA.-Kim, E. Y., Sudini, K., Singh, A. K., Haque, M., Leaman, D., Khuder, S., Ahmed, S. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1.
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Objective. Rheumatoid arthritis synovial fibroblasts (RASFs) are crucial mediators of synovial inflammation and joint destruction. However, their intrinsic immunoregulatory mechanisms under chronic inflammation remain unclear. Thus, the present study was undertaken to understand the role of a newly identified GTPase, guanylate binding protein 5 (GBP-5), in RA pathogenesis.Methods. The expression of GBP1-GBP7 transcripts was evaluated using quantitative reverse transcriptionpolymerase chain reaction in RA synovial tissue or synovial tissue unaffected by RA. Our investigation on transient small interfering RNA (siRNA) knockdown and lentiviral overexpression in human RASFs examined the regulatory role of GBP-5 on proinflammatory cytokine signaling pathways. Unbiased whole transcriptome RNA sequencing analysis was used to assess the impact of GBP-5 on RASF molecular functions. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA) in vivo.Results. Among different GBPs evaluated, GBP-5 was selectively up-regulated in RA synovial tissue (P < 0.05; n = 4) and in the joints of rats with AIA (P < 0.05; n = 6) and was significantly induced in human RASFs by interleukin-1β (IL-1β), tumor necrosis factor (TNF), and/or interferon-γ (IFNγ) (P < 0.05; n = 3). Bioinformatics analysis of RNA sequencing data identified cytokine-cytokine receptor signaling as a major function altered by GBP-5, with IL-6 signaling as a primary target. Knockdown of GBP-5 amplified IL-1β-induced IL-6, IL-8, and epithelial neutrophilactivating peptide 78/CXCL5 production by 44%, 54%, 45%, respectively, and matrix metalloproteinase 1 (MMP-1) production by several-fold-effects that reversed with exogenously delivered GBP-5. Lack of GBP-5 increased IFNγ-induced proliferation and migration of human RASFs. GBP-5 knockdown in vivo using intraarticular siRNA exacerbated disease onset, severity, synovitis, and bone destruction in rat AIA.Conclusion. Expressed by RASFs in response to cytokine stimulation, GBP-5 has potential to restore cellular homeostasis and blunt inflammation and tissue destruction in RA.
Monosodium urate (MSU) crystals activate inflammatory pathways that overlap with interleukin-1β (IL-1β) signaling. However, the post-translational mechanisms involved and the role of signaling proteins in this activation are unknown. In the present study, we investigated the intracellular signaling mechanisms involved in MSU-induced activation of THP-1 macrophages and human nondiseased synovial fibroblasts (NLSFs) and the in vivo efficacy of an inhibitor of tumor growth factor-β (TGF-β)-activated kinase 1 (TAK1), 5Z-7-oxozeaenol, in MSU-induced paw inflammation in C57BL/6 mice. THP-1 macrophage activation with MSU crystals (25-200 µg/ml) resulted in the rapid and sustained phosphorylation of interleukin-1 receptor-activated kinase 1 (IRAK1 Thr 209) and TAK1 (Thr 184/187) and their association with the E3 ubiquitin ligase TRAF6. At the cellular level, MSU inhibited the deubiquitinases A20 and UCHL2 and increased 20s proteasomal activity, leading to a global decrease in K 63-linked ubiquitination and increase in K 48-linked ubiquitination in THP-1 macrophages. While MSU did not stimulate cytokine production in NLSFs, it significantly amplified IL-1β-induced IL-6, IL-8, and ENA-78/CXCL5 production. Docking studies and MD simulations followed by TAK1 in vitro kinase assays revealed that uric acid molecules are capable of arresting TAK1 in an active-state conformation, resulting in sustained TAK1 kinase activation. Importantly, MSU-induced proinflammatory cytokine production was completely inhibited by 5Z-7oxozeaenol but not IRAK1/4 or TRAF6 inhibitors. Administration of 5Z-7-oxozeaenol (5 or 15 mg/kg; orally) significantly inhibited MSU-induced paw inflammation in C57BL/6 mice. Our study identifies a novel post-translational mechanism of TAK1 activation by MSU and suggests the therapeutic potential of TAK1 in regulating MSU-induced inflammation.
The aqueous bark extract of Rhizophora mucronata Poir. is used in Bangladesh as a hypoglycemic aid without any knowledge about its probable mode of action . It is an effort to assess the claimed hypoglycemic property of the crude drug and to get some knowledge about it. The Hypoglycemic effects were investigated in the ethanol extract of bark of Rhizophora mucronata Poir on Long Evans rats. Gut perfusion and six segments studies were carried out to assess these activities. In gut-perfusion study the percentage of glucose absorption in control rats vs. rats fed with 500 mg/kg extracts were observed at 5, 10, 15, 20, 25 and 30 minutes and the significant (p<0.05) absorption result was found which were respectively 30.71 vs. 56.34, 36.87 vs. 71.30, 35.87 vs. 62.11, 36.64 vs. 70.44, 36.36 vs. 64.21, 35.24 vs. 56.32, The percentage drug unabsorbed in GIT was better with 500 mg/kg than 250 mg/kg. The six-segment study was performed to assess the amount of sucrose remaining in the GIT at six different positions. The amount of sucrose unabsorbed in different GIT segments showed that in control rats vs. rats fed with 500mg/kg extract at 30 minutes in mmol/l was 0.1526 vs. 0.1767 which gradually abating with time dependent manner at 60, 180, and 360 minutes in mmol/l. These results suggests Rhizophora mucronata bark has significant dose dependant anti-diabetic effects, which significantly suppressed postprandial hyperglycemia after sucrose ingestion and reversibly increases the unabsorbed sucrose content throughout the gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.