Optical technologies are extremely competitive candidates to achieve very-high throughput links between ground and GEO satellites; however, their feasibility relies on the ability to mitigate channel impairments due to atmospheric turbulence. For that purpose, Adaptive Optics (AO) has already proved to be highly efficient on the downlink. However, for the uplink, anisoplanatism induced by point-ahead angle (PAA) compromises AO pre-compensation efficiency to an extent that depends on propagation conditions. The ability to properly assess the anisoplanatism impact in a wide variety of conditions is thus critical in designing the optical ground terminals. In this paper, we demonstrate the consistency of experimental coupled flux statistics with results coming from performance and end-to-end models, on an AO pre-compensated 13 km slant path in Tenerife. This validation is demonstrated in a wide variety of turbulence conditions, hence consolidating propagation channel models that are of critical importance for the reliability of future GEO feeder links. We then compare experimental results to theoretical on-sky performance, and discuss to what extent such slant path or horizontal path experiments can be representative of real GEO links.
Context. Adaptive optics (AO) is a technique allowing for ground-based telescopes' angular resolution to be improved drastically. The wavefront sensor (WFS) is one of the key components of such systems, driving the fundamental performance limitations. Aims. In this paper, we focus on a specific class of WFS: the Fourier-filtering wavefront sensors (FFWFSs). This class is known for its extremely high sensitivity. However, a clear and comprehensive noise propagation model for any kind of FFWFS is lacking. Methods. Considering read-out noise and photon noise, we derived a simple and comprehensive model allowing us to understand how these noises propagates in the phase reconstruction in the linear framework. Results. This new noise propagation model works for any kind of FFWFS, and it allows one to revisit the fundamental sensitivity limit of these sensors. Furthermore, a new comparison between widely used FFWFSs is held. We focus on the two main FFWFS classes used: the Zernike WFS (ZWFS) and the pyramid WFS (PWFS), bringing new understanding of their behavior.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.