Context. Adaptive optics (AO) systems greatly increase the resolution of large telescopes, but produce complex point spread function (PSF) shapes, varying in time and across the field of view. The PSF must be accurately known since it provides crucial information about optical systems for design, characterization, diagnostics, and image post-processing. Aims. We develop here a model of the AO long-exposure PSF, adapted to various seeing conditions and any AO system. This model is made to match accurately both the core of the PSF and its turbulent halo.Methods. The PSF model we develop is based on a parsimonious parameterization of the phase power spectral density, with only five parameters to describe circularly symmetric PSFs and seven parameters for asymmetrical ones. Moreover, one of the parameters is the Fried parameter r 0 of the turbulence's strength. This physical parameter is an asset in the PSF model since it can be correlated with external measurements of the r 0 , such as phase slopes from the AO real time computer (RTC) or site seeing monitoring. Results. We fit our model against end-to-end simulated PSFs using the OOMAO tool, and against on-sky PSFs from the SPHERE/ZIMPOL imager and the MUSE integral field spectrometer working in AO narrow-field mode. Our model matches the shape of the AO PSF both in the core and the halo, with a relative error smaller than 1% for simulated and experimental data. We also show that we retrieve the r 0 parameter with sub-centimeter precision on simulated data. For ZIMPOL data, we show a correlation of 97% between our r 0 estimation and the RTC estimation. Finally, MUSE allows us to test the spectral dependency of the fitted r 0 parameter. It follows the theoretical λ 6/5 evolution with a standard deviation of 0.3 cm. Evolution of other PSF parameters, such as residual phase variance or aliasing, is also discussed.
The design and performance of an adaptive optics flood illumination ophthalmoscope (AO-FIO) platform, based on eye motion and dynamic aberrations experimental analysis, are described. The system incorporates a custom-built real-time controller, enabling up to 70 Hz loop rate without jitter, and an AO-corrected illumination capable of projecting high-resolution features in the retina. Wide-field (2.7°×5.4°) and distortionless images from vessel walls, capillaries, and the lamina cribrosa are obtained with an enhanced contrast and signal-to-noise ratio, thanks to careful control of AO parameters. The high spatial and temporal resolution (image acquisition up to 200 Hz) performance achieved by this platform enables the visualization of vessel deformation and blood flow. This system opens up the prospect of a return to favor of flood illumination adaptive optics systems provided that its high pixel rate and structured illumination capabilities are exploited.
Optical technologies are extremely competitive candidates to achieve very-high throughput links between ground and GEO satellites; however, their feasibility relies on the ability to mitigate channel impairments due to atmospheric turbulence. For that purpose, Adaptive Optics (AO) has already proved to be highly efficient on the downlink. However, for the uplink, anisoplanatism induced by point-ahead angle (PAA) compromises AO pre-compensation efficiency to an extent that depends on propagation conditions. The ability to properly assess the anisoplanatism impact in a wide variety of conditions is thus critical in designing the optical ground terminals. In this paper, we demonstrate the consistency of experimental coupled flux statistics with results coming from performance and end-to-end models, on an AO pre-compensated 13 km slant path in Tenerife. This validation is demonstrated in a wide variety of turbulence conditions, hence consolidating propagation channel models that are of critical importance for the reliability of future GEO feeder links. We then compare experimental results to theoretical on-sky performance, and discuss to what extent such slant path or horizontal path experiments can be representative of real GEO links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.