Proficient antibiotic drug delivery plays a key role in treating infections. In this article we prepared an electrospun wound dressing which releases Tetracycline in a timed and dose controlled matter for one week. In order to fabricate a wound dressing which can release Tetracycline in a longer duration and at an effective therapeutic level we designed a bilayer electrospun patch made of polyvinyl alcohol (PVA), polycaprolacton (PCL), and coated the whole system with chitosan. The SEM micrograph showed the dependent relationship of the morphology of the nanofibers on the Tetracycline concentration, and the addition of PCL electrospun layer decreased the pore size and water uptake rate. However, it was found that coating PVA/PCL bilayered electrospun sheet with chitosan increased the water uptake rate, which is an important property in biomedical applications. According to the FTIR results, chemical composition of the scaffolds did not change during the fabrication process. Mechanical properties of the samples were assessed, and the results revealed that the chitosan coating improved the tensile strength of the electrospun layers. Furthermore, based on in vitro release tests, it was found that bilayered electrospun sheets coated with chitosan controlled drug release efficiently. In addition, the antibacterial tests performed in vitro showed stronger antibacterial activity on S. aureus cultures for PVA/PCL/Chitosan in comparison to uncoated samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.