This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Most of the gastrointestinal stromal tumors (GISTs) have gain-of-function mutations in the KIT gene, which can be used as a prognostic marker for the biological behavior of tumors, predictive marker for the response of tyrosine kinase inhibitors, and diagnostic marker. Researchers have focused on PDGFRA mutations because of both their prognostic and predictive potential and DOG1 positivity for diagnosis on GISTs. The aim of this study is to investigate the effect DOG1, PDGFRA, and KIT mutations on the prediction of the outcome for GIST management. Polymerase chain reaction was performed for KIT gene exons 9, 11, 13, and 17 and PDGFRA gene exons 12 and 18 with the genomic DNA of 46 GIST patients, and amplicons were sequenced in both directions. Immunocytochemical stainings were done by using primary antibodies. Molecular analysis revealed that the KIT mutation was observed in 63% of all cases, while the PDGFRA mutation was observed in 23.9% of cases. Significant relationships were found between age and KIT mutation, tumor location and KIT mutations, and tumor location and PDGFRA mutations (p ≤ 0.05). DOG1 positivity was detected in 65.2% of all GISTs and DOG1-positive cells had a higher KIT mutation ratio than DOG1-negative cells (p ≤ 0.05). KIT gene exon 11 mutations in DOG1-positive cells was higher than DOG1-negative cells (p ≤ 0.05). Conversely, KIT gene exon 13 mutations were higher in DOG1-negative cells than DOG1-positive cells (p ≤ 0.05). In this study, KIT mutation frequency was found similar with the European population; conversely, PDGFRA mutation frequency was similar with an Asian-Chinese-based study. KIT/PDGFRA mutations and tumor location can be used for the prediction of tumor behavior and the management of disease in GISTs. DOG1 positivity might be a candidate marker to support KIT and PDGFRA mutations, due to the higher DOG1 positivity in KIT exon 11 mutant and stomach- and small intestine-localized GISTs.
Radiation-induced normal tissue toxicity often limits the curative treatment of cancer. Moreover, normal tissue relative biological effectiveness data for high-linear energy transfer particles are urgently needed. We propose a strategy based on transcriptome analysis of patient-derived human intestinal organoids (HIO) to determine molecular surrogates for radioresponse of gastrointestinal (GI) organs at risk in a personalized manner. HIO were generated from induced pluripotent stem cells (iPSC), which were derived from skin biopsies of three patients, including two patients with FANCA deficiency as a paradigm for enhanced radiosensitivity. For the two Fanconi anemia (FA) patients (HIO-104 and 106, previously published as FA-A#1 IND-iPS1 and FA-A#2 IND-iPS3), FANCA expression was reconstituted as a prerequisite for generation of HIO via lentiviral expression of a doxycycline inducible construct. For radiosensitivity analysis, FANCA deficient and FANCA rescued as well as wtHIO were sham treated or irradiated with 4Gy photon, proton or carbon ions at HIT, respectively. Immunofluorescence staining of HIO for 53BP1-foci was performed 1 h post IR and gene expression analyses was performed 12 and 48 h post IR. 53BP1-foci numbers and size correlated with the higher RBE of carbon ions. A FANCA dependent differential gene expression in response to radiation was found (p < 0.01, ANOVA; n = 1071 12 h; n = 1100 48 h). Pathways associated with FA and DNA-damage repair i.e., transcriptional coupled nucleotide excision repair, homology-directed repair and translational synthesis were found to be differentially regulated in FANCA deficient HIO. Next, differential regulated genes were investigated as a function of radiation quality (RQ, p < 0.05, ANOVA; n = 742 12 h; n = 553 48 h). Interestingly, a gradual increase or decrease of gene expression was found to correlate with the three main qualities, from photon to proton and carbon irradiation. Clustering separated high-linear energy transfer irradiation with carbons from proton and photon irradiation. Genes associated with dual incision steps of TC-NER were differentially regulated in photon vs. proton and carbon irradiation. Consequently, SUMO3, ALC1, POLE4, PCBP4, MUTYH expression correlated with the higher RBE of carbon ions. An interaction between the two studied parameters FA and RQ was identified (p < 0.01, 2-way ANOVA n = 476). A comparison of genes regulated as a function of FA, RQ and RBE suggest a role for p53 interacting genes BRD7, EWSR1, FBXO11, FBXW8, HMGB1, MAGED2, PCBP4, and RPS27 as modulators of FA in response to radiation. This proof of concept study demonstrates that patient tailored evaluation of GI response to radiation is feasible via generation of HIO and comparative transcriptome profiling. This methodology can now be further explored for a personalized assessment of GI radiosensitivity and RBE estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.