Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-β1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- β1). Plasma and skin levels of TGF-β1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.
In populations exposed to Leishmania braziliensis, certain subjects develop skin ulcers, whereas others are naturally protected against cutaneous leishmaniasis. We have evaluated which cytokines are most crucial in the development of skin lesions. We found that active lesions occur in subjects with polarized Th2 or mixed Th1/Th2 responses, both associated with elevated IL-10 production. IL-10 was strongly associated (p = 0.004, odd ratio (OR) = 6.8, confidence interval = 1.9–25) with lesions, excluding IFN-γ, IL-12, TNF, IL-13, and IL-4 from the regression model. IL-10 was produced by blood monocytes and CD4+CD25+ T lymphocytes (mostly Foxp3+). However, we did not observe any difference between the number of these cells present in the blood of subjects with active lesions and those present in resistant subjects. Genetic analysis of the IL10−819C/T polymorphism, located in the IL10 promoter, showed that the C allele increased the risk of lesions (OR = 2.5 (1.12–5.7), p = 0.003). Functional analysis of these variants showed allele-specific binding of nuclear factors. The IL10-819C/C genotype was associated with higher levels of IL-10 than C/T and T/T genotypes. These observations demonstrate an important role for IL-10 in skin lesions in humans infected with L. braziliensis, and identify circulating monocytes and Tregs as principal sources of IL-10 in these patients.
ImportanceTo our knowledge, there have been no clinical trials of ultra-high-dose-rate radiotherapy delivered at more than 40 Gy/sec, known as FLASH therapy, nor first-in-human use of proton FLASH.ObjectivesTo assess the clinical workflow feasibility and treatment-related toxic effects of FLASH and pain relief at the treatment sites.Design, Setting, and ParticipantsIn the FAST-01 nonrandomized trial, participants treated at Cincinnati Children’s/UC Health Proton Therapy Center underwent palliative FLASH radiotherapy to extremity bone metastases. Patients 18 years and older with 1 to 3 painful extremity bone metastases and life expectancies of 2 months or more were eligible. Patients were excluded if they had foot, hand, and wrist metastases; metastases locally treated in the 2 weeks prior; metal implants in the treatment field; known enhanced tissue radiosensitivity; and implanted devices at risk of malfunction with radiotherapy. One of 11 patients who consented was excluded based on eligibility. The end points were evaluated at 3 months posttreatment, and patients were followed up through death or loss to follow-up for toxic effects and pain assessments. Of the 10 included patients, 2 died after the 2-month follow-up but before the 3-month follow-up; 8 participants completed the 3-month evaluation. Data were collected from November 3, 2020, to January 28, 2022, and analyzed from January 28, 2022, to September 1, 2022.InterventionsBone metastases were treated on a FLASH-enabled (≥40 Gy/sec) proton radiotherapy system using a single-transmission proton beam. This is consistent with standard of care using the same prescription (8 Gy in a single fraction) but on a conventional-dose-rate (approximately 0.03 Gy/sec) photon radiotherapy system.Main Outcome and MeasuresMain outcomes included patient time on the treatment couch, device-related treatment delays, adverse events related to FLASH, patient-reported pain scores, and analgesic use.ResultsA total of 10 patients (age range, 27-81 years [median age, 63 years]; 5 [50%] male) underwent FLASH radiotherapy at 12 metastatic sites. There were no FLASH-related technical issues or delays. The average (range) time on the treatment couch was 18.9 (11-33) minutes per patient and 15.8 (11-22) minutes per treatment site. Median (range) follow-up was 4.8 (2.3-13.0) months. Adverse events were mild and consistent with conventional radiotherapy. Transient pain flares occurred in 4 of the 12 treated sites (33%). In 8 of the 12 sites (67%) patients reported pain relief, and in 6 of the 12 sites (50%) patients reported a complete response (no pain).Conclusions and RelevanceIn this nonrandomized trial, clinical workflow metrics, treatment efficacy, and safety data demonstrated that ultra-high-dose-rate proton FLASH radiotherapy was clinically feasible. The treatment efficacy and the profile of adverse events were comparable with those of standard-of-care radiotherapy. These findings support the further exploration of FLASH radiotherapy in patients with cancer.Trial RegistrationClinicalTrials.gov Identifier: NCT04592887
Interleukin (IL)-22 acts on epithelia, hepatocytes, and pancreatic cells and stimulates innate immunity, tissue protection, and repair. IL-22 may also cause inflammation and abnormal cell proliferation. The binding of IL-22 to its receptor is competed by IL-22 binding protein (IL-22BP), which may limit the deleterious effects of IL-22. The role of IL-22 and IL-22BP in chronic liver diseases is unknown. We addressed this question in individuals chronically infected with schistosomes or hepatitis C virus (HCV). We first demonstrate that schistosome eggs stimulate production of IL-22 transcripts and inhibit accumulation of IL22-BP transcripts in schistosome-infected mice, and that schistosome eggs selectively stimulate production of IL-22 in cultures of blood leukocytes from individuals chronically infected with Schistosoma japonicum. High IL-22 levels in cultures correlated with protection against hepatic fibrosis and portal hypertension. To test further the implication of IL-22/IL-22BP in hepatic disease, we analyzed common genetic variants of IL22RA2, which encodes IL-22BP, and found that the genotypes, AA, GG of rs6570136 (P 5 0.003; odds ratio [OR] 5 2), and CC, TT of rs2064501 (P 5 0.01; OR 5 2), were associated with severe fibrosis in Chinese infected with S. japonicum. We confirmed this result in Sudanese (rs6570136 GG [P 5 0.0007; OR 5 8.2], rs2064501 TT [P 5 0.02; OR 5 3.1]), and Brazilians (rs6570136 GG [P 5 0.003; OR 5 26], rs2064501 TC, TT (P 5 0.03; OR 5 11]) infected with S. mansoni. The aggravating genotypes were associated with high IL22RA2 transcripts levels. Furthermore, these same variants were also associated with HCV-induced fibrosis and cirrhosis (rs6570136 GG, GA [P 5 0.007; OR 5 1.7], rs2064501 TT, TC (P 5 0.004; OR 5 2.4]). Conclusions: These results provide strong evidence that IL-22 protects against and IL-22BP aggravates liver fibrosis and cirrhosis in humans with chronic liver infections. Thus, pharmacological modulation of IL-22 BP may be an effective strategy to limit cirrhosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.