A series of novel fluorescent BODIPY-anionic boron cluster conjugates bearing [BH] (5, 6), [3,3'-Co(1,2-CBH)] (7, 8), and [3,3'-Fe(1,2-CBH)] (9) anions have been readily synthesized from meso-(4-hydroxyphenyl)-4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene (BODIPY 4), and their structure and photoluminescence properties have been assessed. Linking anionic boron clusters to the BODIPY (4) does not alter significantly the luminescent properties of the final fluorophores, showing all of them similar emission fluorescent quantum yields (3-6%). Moreover, the cytotoxicity and cellular uptake of compounds 5-9 have been analyzed in vitro at different concentrations of B (5, 50, and 100 μg B/mL) using HeLa cells. At the lowest concentration, none of the compounds shows cytotoxicity and they are successfully internalized by the cells, especially compounds 7 and 8, which exhibit a strong cytoplasmic stain indicating an excellent internalization efficiency. To the best of our knowledge, these are the first BODIPY-anionic boron cluster conjugates developed as fluorescent dyes aiming at prospective biomedical applications. Furthermore, the cellular permeability of the starting BODIPY (4) was improved after the functionalization with boron clusters. The exceptional cellular uptake and intracellular boron release, together with the fluorescent and biocompatibility properties, make compounds 7 and 8 good candidates for in vitro cell tracking.
Linking m-carborane to the anthracene dye produces an exceptional enhancement of the fluorescence properties, with quantum efficiencies close to 100% in solution. Dyads were internalized by HeLa cells through endocytosis showing intense blue emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.