In this study for the first time, the effects of decrease in heat inflow to the weld metal in friction stir process by utilising semisolid processing and decreasing the pin rotational speed as well as increasing the pin transverse speed were examined. As a result, the characteristic loss of hardness and strength in the weld zone were eliminated. The results showed that by approaching the ultrafine microstructure in the weld zone through the hybrid FSW/SSW process, the hardness and elongation values reached to 90 Hv and 8.88%, respectively. These are only slightly different from those of the base metal of the welded samples. Furthermore, the ultimate tensile strength of the samples welded by the hybrid technique was found to be about 167 MPa that was higher than those of the samples welded by friction stir welding (151 MPa) and semisolid welding (114 MPa) techniques.
Preparation of metallic semisolid slurries using the cooling slope method is increasingly becoming popular because of the simplicity of design and control of the process. Microstructural features of the resultant semisolid castings such as size and sphericity of the primary particles are affected by several processing parameters such as pouring rate, cooling slope surface angle and length as well as the melt superheat. In this work, a miniature cooling slope for semisolid casting of small parts was built and attempts were made to develop an empirical relationship showing the correlation between the sphericity of the microstructure of semisolid cast 6061-aluminum alloy and the processing variables. The relationships were developed by a two-level factorial method. The results showed that the interaction of cooling slope length and pouring rate factors had the most effect on the sphericity of the final semisolid cast microstructure.
In this study, the effects of tungsten on microstructure and wear performance of Fe-Cr-C claddings were evaluated. In this regard, tungsten inert gas surfacing process was employed to deposit Fe-Cr-C and Fe-Cr-C-W hardfacing alloys on plain carbon steel substrate using preplaced powders. Phase composition, microstructure, and wear behavior of clad layers were investigated using X-ray diffraction analysis, optical and scanning electron microscopy, and reciprocating wear tests, respectively. The claddings were well bonded to the substrate and showed a uniform microstructure. Cr 7 C 3 and WC carbides were detected in the deposited layers. Further investigations indicated that the hardness and wear resistance can be improved by adding tungsten into Fe-Cr-C hardfacing alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.