Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width. Theoretical modeling of spin pumping through the surface of Bi2Se3, as well as of the measured angular dependence of spin-charge conversion signal, suggests that pumped spin current is first greatly enhanced by the surface SOC and then converted into a dc-voltage signal primarily by the inverse spin Hall effect due to SOC of the bulk of Bi2Se3. We find that the FMR line width broadens significantly (more than a factor of 5) and we deduce a spin Hall angle as large as 0.43 in the Bi2Se3 layer.
The spin-orbit torque (SOT) that arises from materials with large spin-orbit coupling promises a path for ultralow power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BiSe thin films in BiSe/CoFeB heterostructures by using d.c. planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin torque efficiency (θ) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08 using the d.c. planar Hall and ST-FMR methods, respectively. Moreover, switching of the perpendicular CoFeB multilayers using the SOT from the BiSe was observed at room temperature with a low critical magnetization switching current density of 4.3 × 10 A cm. Quantum transport simulations using a realistic sp tight-binding model suggests that the high SOT in sputtered BiSe is due to the quantum confinement effect with a charge-to-spin conversion efficiency that enhances with reduced size and dimensionality. The demonstrated θ, ease of growth of the films on a silicon substrate and successful growth and switching of perpendicular CoFeB multilayers on BiSe films provide an avenue for the use of BiSe as a spin density generator in SOT-based memory and logic devices.
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (field-like) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 kOe and 5 kOe at 10 8 A/cm 2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (~ 1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.
Strain-mediated voltage control of magnetization in piezoelectric/ferromagnetic systems is a promising mechanism to implement energy-efficient spintronic memory devices. Here, we demonstrate giant voltage manipulation of MgO magnetic tunnel junctions (MTJ) on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) piezoelectric substrate with (001) orientation. It is found that the magnetic easy axis, switching field, and the tunnel magnetoresistance (TMR) of the MTJ can be efficiently controlled by strain from the underlying piezoelectric layer upon the application of a gate voltage. Repeatable voltage controlled MTJ toggling between high/low-resistance states is demonstrated. More importantly, instead of relying on the intrinsic anisotropy of the piezoelectric substrate to generate the required strain, we utilize anisotropic strain produced using local gating scheme, which is scalable and amenable to practical memory applications. Additionally, the adoption of crystalline MgO-based MTJ on piezoelectric layer lends itself to high TMR in the strain-mediated MRAM devices. *Corresponding author. Tel: (612) 625-9509. E-mail: jpwang@umn.edu 2 Information storage technology is constantly challenged by an increasing demand for storage units that are small, retain information for the longest time, and dissipate miniscule amount of energy to store (write) and retrieve (read) information. Magnetic random access memory (MRAM) meets these requirements to a large extent and has been proposed as a universal storage device for computer memory. [1][2][3] In MRAM technology, magnetic tunneling junctions (MTJ) comprise the main storage cells. Low-energy writing of bits requires an electrically tunable mechanism to reorient the magnetization of the MTJ. However, the widely studied switching mechanisms based on utilizing current induced spin-transfer-torques (STT) 4,5 or spin-orbit-torques (SOT) 6-8 incur high energy dissipation because of the relatively large writing current density. 9,10In recent years, several mechanisms based on using voltage to control magnetization have emerged as promising routes for ultra-low power writing of data. 11-15 Among these approaches, the strain induced control of the magnetic anisotropy in multiferroic heterostructures (a magnetostrictive layer elastically coupled with an underlying piezoelectric layer) stands out as a remarkably energyefficient switching mechanism. 16-21It has been widely investigated in various piezoelectric/ferromagnetic bilayer thin films [22][23][24][25][26] or nano-structures. [27][28][29][30] There are also several theoretical predications 31-33 that such a method will dissipate only a few atto-Joules (aJ) of energy to write data. This establishes the promise of using strain to control the resistance of an MTJ for ultra-energy-efficient memory applications.The key for strain control of the in-plane magnetization is that the in-plane strain should be anisotropic. In most of the previous reports, [24][25][26][27]34 single crystalline piezoelectric substrates Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.