A desire to produce power in microgrids has grown as the demand for electricity has expanded and the cost of installing modern transmission lines over long distances has become infeasible. As such, microgrids pose DC/AC harmonic distortion losses to the voltage supply that eventually fluctuate the output voltage. The key takeaways that this study presents are: (a) a configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system is achieved; (b) different scenarios of various schemes of sustainability of the power management in microgrids are analyzed; and (c) the reliable and stable network output power distribution is achieved. In this, the proposed control configuration provides space for construction and stability of the power system with sustainability of the power management. The results show that this current configuration works and stabilizes the network in the shortest time possible, and that the DC connection voltage is regulated and maintains reliable network output despite declining slope controllers, DC power and voltage, and power electronic back-to-back converters. Overall, the simulation results show that the proposed system shows acceptable performance under different scenarios. The accuracy of the results is validated with mathematical formulation simulation using MATLAB software. This system can be utilized in distant regions where there is no power grid or in areas where, despite having a power infrastructure, renewable energies are used to supply the output load for the majority of the day and night.
Today, the use of renewable energy is increasing day by day, and this development requires the optimization of these technologies in various dimensions. Solar systems have a higher acceptance due to their high availability and accessibility; the most common solar technology is photovoltaic cell. In this research, modeling was done to achieve the most economically optimal arrangement of photovoltaic panels, inverters, and module placement to generate more electrical energy by considering economic parameters, for which the CPSO algorithm was used. Four different combinations of module and inverter were studied in this research, among which the second combination, which included PV module type one and inverter type two, was the best case. One of the significant results of the present study is 191,430 kWh of electrical energy during the studied year by the solar cell connected to the grid, which requires $42,792,727 to produce.
In this paper, the physical parameters of the absorber pipe of a linear parabolic collector have been investigated. The types of solar collectors, specifically the linear parabolic collector, have been comprehensively studied. Then, the mathematical model of heat transfer in the absorber pipe of the collector has been presented based on valid references. Numerical solutions of the equations related to the absorber pipe were performed by MATLAB software, and the effects of the physical parameters of the absorber pipe on its efficiency were investigated. The results show that increasing the length of the absorber pipe causes a nonlinear decrease in the efficiency of the absorber pipe. One of the important results is the increase in fluid temperature due to the increase in the diameter of the adsorbent tube, which increases the diameter of the fluid temperature by 60 K, in which the parameter increases the efficiency by 0.38%.
Buildings consume around 32% of the produced energy, worldwide and around 19% of the greenhouse gas emissions are related to them. It makes the buildings one of the largest energy consumers and one of the major sources of greenhouse gases emission.HVAC systems are one of the largest consumers of energy in buildings. In hot arid climates, cooling systems used in buildings impose a large pressure on the power grid, which may lead into blackouts. In order to address this problem, several approaches have been examined. Thermal energy storage, in particular, latent heat storage using phase change materials (PCM) has been notably considered in construction applica-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.