Background: Asparginase is known to be one of the most important bedrocks of acute lymphoblastic leukemia (ALL) treatment in almost all pediatric regimens in treatment protocols. Escherichia coli L-Asparginase (EC 3.5.1.1) is one of the most common resources to produce this enzyme. One of the affordable methods to overcome the side effects of drug is utilizing bioinformatic tools in the form of In silico study. In this study we designed a new structure of L-Asparginase to decrease its toxicity, reduce some side effects and increase the stability. Methods: We used some bioinformatics software and servers like Toxin red, Popmusic, kobami and I-TASSER server to reduce toxicity level of enzyme, and to increase stability and enzyme half-life. Results: We obtained 6 protein sequences in which the best was Mut 6 with four changes in structure: L23G, K129L, S263C and R291F. In contrast to the wild type, the new predicted protein is not toxic and has 25 hours more half-life and 600 kcal/mol more stable with no significant change in protein secondary, tertiary structure, antigenicity and allergenicity. Conclusions: Finally, sequence number 6 was the only sequence with all distinct characteristics: non-toxic, more stability and more half life.
B-cell lymphoma 6 (BCL6) regulates various genes and is reported to be overexpressed in lymphomas and other malignancies. Thus, BCL6 inhibition or its tagging for degradation would be an amenable therapeutic approach. A library of 2500 approved drugs was employed to find BCL6 inhibitory molecules via virtual screening. Moreover, the 3D core structure of 170 BCL6 inhibitors was used to build a 3D QSAR model and predict the biological activity. The SNP database was analyzed to study the impact on the destabilization of BCL6/drug interactions. Structural similarity search and molecular docking analyses were used to assess the interaction between possible off-targets and BCL6 inhibitors. The tendency of drugs for passive membrane permeability was also analyzed. Lifitegrast (DB11611) had favorable binding properties and biological activity compared to the BI-3802. Missense SNPs were located at the essential interaction sites of the BCL6. Structural similarity search resulted in five BTB-domain containing off-target proteins. BI-3802 and Lifitegrast had similar chemical behavior and binding properties against off-target candidates. More interestingly, the binding affinity of BI-3802 (against off-targets) was higher than Lifitegrast. Energetically, Lifitegrast was less favorable for passive membrane permeability. The interaction between BCL6 and BI-3802 is more prone to SNP-derived variations. On the other hand, higher nonspecific binding of BI-3802 to off-target proteins could bring about higher undesirable properties. It should also be noted that energetically less desirable passive membrane translocation of Lifitegrast would demand drug delivery vehicles. However, further empirical evaluation of Lifitegrast would unveil its true potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.