Detecting various types of cells in and aroundthe tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.
Neural sequence to sequence text generation has been proved to be a viable approach to paraphrase generation. Despite promising results, paraphrases generated by these models mostly suffer from lack of quality and diversity. To address these problems, we propose a novel retrieval-based method for paraphrase generation. Our model first retrieves a paraphrase pair similar to the input sentence from a pre-defined index. With its novel editor module, the model then paraphrases the input sequence by editing it using the extracted relations between the retrieved pair of sentences. In order to have fine-grained control over the editing process, our model uses the newly introduced concept of Micro Edit Vectors. It both extracts and exploits these vectors using the attention mechanism in the Transformer architecture. Experimental results show the superiority of our paraphrase generation method in terms of both automatic metrics, and human evaluation of relevance, grammaticality, and diversity of generated paraphrases.
Background We developed transformer-based deep learning models based on natural language processing for early risk assessment of Alzheimer’s disease from the picture description test. Methods The lack of large datasets poses the most important limitation for using complex models that do not require feature engineering. Transformer-based pre-trained deep language models have recently made a large leap in NLP research and application. These models are pre-trained on available large datasets to understand natural language texts appropriately, and are shown to subsequently perform well on classification tasks with small training sets. The overall classification model is a simple classifier on top of the pre-trained deep language model. Results The models are evaluated on picture description test transcripts of the Pitt corpus, which contains data of 170 AD patients with 257 interviews and 99 healthy controls with 243 interviews. The large bidirectional encoder representations from transformers (BERTLarge) embedding with logistic regression classifier achieves classification accuracy of 88.08%, which improves the state-of-the-art by 2.48%. Conclusions Using pre-trained language models can improve AD prediction. This not only solves the problem of lack of sufficiently large datasets, but also reduces the need for expert-defined features.
Despite the vast success neural networks have achieved in different application domains, they have been proven to be vulnerable to adversarial perturbations (small changes in the input), which lead them to produce the wrong output. In this paper, we propose a novel method, based on gradient projection, for generating universal adversarial perturbations for text; namely sequence of words that can be added to any input in order to fool the classifier with high probability. We observed that text classifiers are quite vulnerable to such perturbations: inserting even a single adversarial word to the beginning of every input sequence can drop the accuracy from 93% to 50%.
Deep generative models have achieved great success in areas such as image, speech, and natural language processing in the past few years. Thanks to the advances in graph-based deep learning, and in particular graph representation learning, deep graph generation methods have recently emerged with new applications ranging from discovering novel molecular structures to modeling social networks. This paper conducts a comprehensive survey on deep learning-based graph generation approaches and classifies them into five broad categories, namely, autoregressive, autoencoder-based, reinforcement learning-based, adversarial, and flow-based graph generators, providing the readers a detailed description of the methods in each class. We also present publicly available source codes, commonly used datasets, and the most widely utilized evaluation metrics. Finally, we review current trends and suggest future research directions based on the existing challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.