Field emission studies are reported for the first time on layered MoS₂ sheets at the base pressure of ∼1 × 10⁻⁸ mbar. The turn-on field required to draw a field emission current density of 10 μA/cm² is found to be 3.5 V/μm for MoS₂ sheets. The turn-on values are found to be significantly lower than the reported MoS₂ nanoflowers, graphene, and carbon nanotube-based field emitters due to the high field enhancement factor (∼1138) associated with nanometric sharp edges of MoS₂ sheet emitter surface. The emission current-time plots show good stability over a period of 3 h. Owing to the low turn-on field and planar (sheetlike) structure, the MoS₂ could be utilized for future vacuum microelectronics/nanoelectronic and flat panel display applications.
Field emission studies have been carried out on undoped as well as N- and B-doped graphene samples prepared by arc-discharge method in a hydrogen atmosphere. These graphene samples exhibit very low turn-on fields. N-doped graphene shows the lowest turn-on field of 0.6 V/μm, corresponding to emission current density of 10 μA/cm2. These characteristics are superior to the other types of nanomaterials reported in the literature. Furthermore, emission currents are stable over the period of more than 3 h for the graphene samples. The observed emission behavior has been explained on the basis of nanometric features of graphene and resonance tunneling phenomenon.
We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap.
We report field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates. In both cases, under the chosen growth conditions, the dry process of pulsed laser deposition (PLD) is seen to render a dense nanostructured morphology of MoS2, which is important for local electric field enhancement in field emission application. In the case of the MoS2 film on silicon (Si), the turn-on field required to draw an emission current density of 10 μA/cm(2) is found to be 2.8 V/μm. Interestingly, the MoS2 film on a tungsten (W) tip emitter delivers a large emission current density of ∼30 mA/cm(2) at a relatively lower applied voltage of ∼3.8 kV. Thus, the PLD-MoS2 can be utilized for various field emission-based applications. We also report our results of photodiode-like behavior in (n- and p- type) Si/PLD-MoS2 heterostructures. Finally we show that MoS2 films deposited on flexible kapton substrate show a good photoresponse and recovery. Our investigations thus hold great promise for the development of PLD MoS2 films in application domains such as field emitters and heterostructures for novel nanoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.