The aim of this study is to prepare immobilized protease with high hydrolytic activity forbiotechnological applications. Local Bean Seeds (Dolichos Lablab L.) were used for the extraction of acidprotease using tris-buffer, pH 4.5 as enzyme solvent. Free acidic protease was immobilized on entrapment in calcium alginate gel (in situ activated) by covalent binding method. Their activity and immobilization efficiency for hemoglobin hydrolysis was investigated. Temperature and pH maxima of the immobilized protease showed no changes before and after immobilization. The immobilized protease exhibited good thermal stability and re-usability.
New Co(II), Ni(II) and Cu(II) complexes with urea and asparagine as ligands have been synthesized in (M:L1:L2) molar ratio (where M= Co(II), Ni(II) and Cu(II), L1 =urea, and L2 =asparagine) then identified by micro analytical data, molar conductance measurements, IR, 1HNMR, Mass, UV-VIS spectroscopies and magnetic susceptibility measurements. Thermal degradation studies were carried out by thermal analysis. These complexes have the general formula [M(L1)(L2)(H2O)n]Cl. The molar conductance values in DMSO solvent show the electrolytic nature of these complexes, indicating the outer-sphere coordination of the chloride anions with metal ions. The three complexes have an octahedral structure although urea has shown two modes of coordination. Thermal analysis study shows rapid decomposition reaction for Ni complex and the highest thermal stability for Cu complex. The kinetic parameters were determined from the thermal decomposition data using the Coats-Redfern method. Thermodynamic parameters were calculated using standard relations.
The reaction of urea (ur) and glycine (gly) with the metal ions Co(ΙΙ), Ni(ΙΙ) and Cu(ΙΙ) in ethanolic solution of 1M:1L1:1L2 molar ratio (where M= Co(II), Ni(II) and Cu(II), and L1 = urea L2 = glycine) led to the preparation of complexes of the general formula [M(ur)(gly)(H2O)2]Cl. Elemental microanalysis (CHN), molar conductivity measurements, IR,1HNMR, Mass and UV-VIS spectroscopic, and magnetic susceptibility measurements were used for the characterization of the compounds. Thermal analyses were used for the complexes degradation characterization. The complexes have an octahedral geometry and are of electrolytic nature in DMSO solvent with the absence of inner-sphere coordination of the chloride anion. An inhibition zone was observed for Ni-urea-glycine complex against Escherichia coli when the biological activity was considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.