The generation of diffractive optical elements often requires time and cost consuming production techniques such as photolithography. Especially in research and development, small series of diffractive microstructures are needed and flexible and cost effective fabrication techniques are desirable to enable the fabrication of versatile optical elements on a short time scale. In this work, we introduce a novel process chain for fabrication of diffractive optical elements in various polymers. It is based on a maskless lithography process step, where a computer generated image of the optical element is projected via a digital mirror device and a microscope setup onto a silicon wafer coated with photosensitive resist. In addition, a stitching process allows us to microstructure a large area on the wafer. After development, a soft stamp of the microstructure is made from Polydimethylsiloxane, which is used as a mold for the subsequent hot embossing process, where the final diffractive optical element is replicated into thermoplastic polymer. Experimental results are presented, which demonstrate the applicability of the process.
Abstract-Optical interconnects are the key components for integrated optics to link photonic integrated circuits or to connect external elements such as light sources and detectors. However, misalignment of the optical elements contained and its compensation is a remaining challenge for integrated optical devices. We present a novel method to establish rigid interconnects based on a 2-wavelength self-written waveguide process which automatically compensates for misalignment. We exemplarily demonstrate the capability of our process by writing interconnects between two multimode fibers as well as hot-embossed integrated polymer waveguides and a bare laser diode chip. The coupling efficiency of the interconnects obtained is analyzed with respect to misalignment. We found that coupling losses are as low as 1.3 dB if a lateral misalignment lies within a 10 µm interval, which is achieved by commercially available pick-and-place machines. Our approach is easily combined with high-throughput techniques such as hot embossing and enables low-cost production of interconnects even for mass fabrication in future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.