Recently, the interest in grid-tied PV transformer-less inverters has increased rapidly, because of their higher efficiency and lower cost compared to traditional line transformer inverters. This paper presents a new modified transformer-less topology derived from H5 inverter, and provides a detailed comparison between the use of GaN and Si devices for the proposed topology. Detailed operation modes, inverter structure and switching strategy of the proposed topology are presented. Datasheet information, conduction losses, switching losses, and heat sink requirements are studied and analyzed to provide an accurate comparison between GaN and Si power devices for the proposed topology operating at unity power factor. The results show that, GaN power devices significantly reduce the power losses in the system, which consequently allow a significant increase in either inverter power rating or switching frequency. Thus, the use of GaN power devices for the proposed inverter can be more appealing and cost-effective approach.
The use of Aluminum Gallium Nitride (AlGaN) as a power switching device material has been a promising topic of research in recent years. Along with Silicon Carbide (SiC) and Gallium Nitride (GaN), AlGaN is categorized as a Wideband Gap (WBG) material with intrinsic properties best suited for high power switching applications. This paper simulates and compares the thermal and electrical performance of AlGaN and Silicon (Si) MOSFETs, modeled in COMSOL Multiphysics. Comparisons between similar AlGaN/GaN and Si power modules are made in terms of heatsink requirements. The temperatures for the same operating voltage are found to be significantly lower for the AlGaN MOSFETs structures, compared to Si. The heatsink size for the AlGaN/GaN is found to be smaller compared to Si for the power modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.