For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful “medication” for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
The coevolution of mycorrhizae with plants represents a major evolutionary adaptation to the land environment. As a bioinoculant, arbuscular mycorrhizal fungi (AMF) play a beneficial role in sustainable agriculture by symbiotically associating with many crop plants. In this review, we primarily focus on the nutritional and non-nutritional functionality of AMF in soil and plant productivity. AMF maintain soil quality and health via three aspects: soil structure, plant physiology, and ecological interactions. These lead plants to increase their functionality, further growth, and productivity. The formation of soil aggregates via glomalin production maintains the soil structure. Physiologically, AMF change nutrient acquisition and thereby increase soil fertility and productivity. Biotic (pathogens and weed plants) and abiotic (salinity, drought, extreme temperature, soil pH, and heavy metals) stress alleviation is also achieved via altering a plant’s physiological status. By serving as a biocontrol agent, AMF negatively interact with plant pathogens. As a result of beneficial interactions with other rhizosphere microorganisms and above-ground organisms, AMF induce a synergistic effect on plant performance. Moreover, they are also involved in land restoration and seedling establishment. The collective effect of all these functions positively influences overall plant performance and productivity.
Fungal taxonomy research, and specifically the study of macro and micro morphological characteristics, requires precise temperature control. This is because variation in temperature can affect macrofungal microstructures. Understanding the appropriate temperature range for drying macrofungal fruitbodies is crucial to ensure consistent reports between studies. In this study, three macrofungal species, viz. Agaricus bisporus, Lentinula edodes, and Pleurotus ostreatus, were selected to compare basidiospore sizes in dried and fresh macrofungal fruitbodies. All three were dehydrated within 24 h of harvesting at five different temperatures: 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, with dehydration lasting 48 h. We measured a total of 1000 basidiospores at each temperature for each species. A linear regression model was used to monitor the relationship between drying temperature and the length, width, and Q value of the basidiospores. We found that drying temperature was negatively related, while Q value was positively related to basidiospore length and width. Analysis of variance shows significant changes in basidiospore size among different drying temperatures. Our data indicate that the optimal method for drying macrofungal fruitbodies is to use a temperature of 30 °C for 48 h and subsequently preserve the specimens with silica gel. Standardizing drying temperature is crucial for the study of macrofungi as basidiospore size is used as a discriminative taxonomic characteristic in macrofungal identification.
Opuntia dillenii (Ker Gawler) is an invasive plant species in Bundala National Park. The outstanding success of the cochineal insect, Dactylopius spp. in bio-control of the prickly pear, Opuntia spp. has been investigated worldwide. The present study reports the emergence of D. opuntiae as a pest of O. dillenii after several decades of its introduction to Sri Lanka. The intensity of infestation was 100% along three of the five transects surveyed and the overall damage was more than 50%. This recent outbreak of D. opuntiae may have resulted from an unnoticed existing population of D. opuntiae in the vicinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.