Nanofluids are suspended nano-sized particles in a base fluid. With increasing demand for more high efficiency thermal systems, nanofluids seem to be a promising option for researchers. As a result, numerous investigations have been undertaken to understand the behaviors of nanofluids. Since their discovery, the thermo-physical properties of nanofluids have been under intense research. Inadequate understanding of the mechanisms involved in the heat transfer of nanofluids has been the major obstacle for the development of sophisticated nanofluids with the desired properties. In this comprehensive review paper, investigations on synthesis, thermo-physical properties, and heat transfer mechanisms of nanofluids have been reviewed and presented. Results show that the thermal conductivity of nanofluids increases with the increase of the operating temperature. This can potentially be used for the efficiency enhancement of thermal systems under higher operating temperatures. In addition, this paper also provides details concerning dependency of the thermo-physical properties as well as synthesis and the heat transfer mechanism of the nanofluids.
Temperature control of the lithium-ion pouch cells is crucial for smooth operation, longevity and enhanced safety in the battery-operated electric vehicles. Investigating the thermal behavior of lithium-ion pouch cells and optimizing the cooling performance are required to accomplish better performance, long life, and enhanced safety. In the present study, the cooling performance characteristics of 20 Ah lithium-ion pouch cell with cold plates along both surfaces are investigated by varying the inlet coolant mass flow rates and the inlet coolant temperatures. The inlet coolant mass flow rate is varied from 0.000833 kg/s to 0.003333 kg/s, and the inlet coolant temperature is varied from 5 °C to 35 °C. In addition, the effects of the cold plate geometry parameter on cooling performance of 20 Ah lithium-ion pouch cell are studied by varying the number of the channels from 4 to 10. The maximum temperature and difference between the maximum and the minimum temperatures are considered as important criteria for cooling performance evaluation of the 20 Ah lithium-ion pouch cell with cold plates along both surfaces. The cooling energy efficiency parameter (β) and the pressure drop for 20 Ah lithium-ion pouch cell with cold plates along both surfaces are also reported. The study shows that enhanced cooling energy efficiency is accompanied with low inlet coolant temperature, low inlet coolant mass flow rate, and a high number of the cooling channels. As a result, the temperature distribution, the pressure drop, and the cooling energy efficiency parameter (β) of the 20 Ah lithium-ion pouch cell with cold plates along both surfaces are provided, and could be applied for optimizing the cooling performances of the thermal management system for lithium-ion batteries in electric vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.