BackgroundThe marine epiphytic dinoflagellate genus Gambierdiscus produce toxins that cause ciguatera fish poisoning (CFP): one of the most significant seafood-borne illnesses associated with fish consumption worldwide. So far, occurrences of CFP incidents in Japan have been mainly reported in subtropical areas. A previous phylogeographic study of Japanese Gambierdiscus revealed the existence of two distinct phylotypes: Gambierdiscus sp. type 1 from subtropical and Gambierdiscus sp. type 2 from temperate areas. However, details of the genetic diversity and distribution for Japanese Gambierdiscus are still unclear, because a comprehensive investigation has not been conducted yet.Methods/Principal FindingA total of 248 strains were examined from samples mainly collected from western and southern coastal areas of Japan during 2006–2011. The SSU rDNA, the LSU rDNA D8–D10 and the ITS region were selected as genetic markers and phylogenetic analyses were conducted. The genetic diversity of Japanese Gambierdiscus was high since five species/phylotypes were detected: including two reported phylotypes (Gambierdiscus sp. type 1 and Gambierdiscus sp. type 2), two species of Gambierdiscus (G. australes and G. cf. yasumotoi) and a hitherto unreported phylotype Gambierdiscus sp. type 3. The distributions of type 3 and G. cf. yasumotoi were restricted to the temperate and the subtropical area, respectively. On the other hand, type 1, type 2 and G. australes occurred from the subtropical to the temperate area, with a tendency that type 1 and G. australes were dominant in the subtropical area, whereas type 2 was dominant in the temperate area. By using mouse bioassay, type 1, type 3 and G. australes exhibited mouse toxicities.Conclusions/SignificanceThis study revealed a surprising diversity of Japanese Gambierdiscus and the distribution of five species/phylotypes displayed clear geographical patterns in Japanese coastal areas. The SSU rDNA and the LSU rDNA D8–D10 as genetic markers are recommended for further use.
Thermoleptolyngbya is a newly proposed genus of thermophilic cyanobacteria that are often abundant in thermal environments. However, a vast majority of Thermoleptolyngbya strains were not systematically identified, and genomic features of this genus are also sparse. Here, polyphasic approaches were employed to identify a thermophilic strain, PKUAC-SCTA183 (A183 hereafter), isolated from hot spring Erdaoqiao, Ganzi prefecture, China. Whole-genome sequencing of the strain revealed its allocation to Thermoleptolyngbya sp. and genetic adaptations to the hot spring environment. While the results of 16S rRNA were deemed inconclusive, the more comprehensive polyphasic approach encompassing phenetic, chemotaxic, and genomic approaches strongly suggest that a new taxon, Thermoleptolyngbya sichuanensis sp. nov., should be delineated around the A183 strain. The genome-scale phylogeny and average nucleotide/amino-acid identity confirmed the genetic divergence of the A183 strain from other strains of Thermoleptolyngbya along with traditional methods such as 16S-23S ITS and its secondary structure analyses. Comparative genomic and phylogenomic analyses revealed inconsistent genome structures between Thermoleptolyngbya A183 and O-77 strains. Further gene ontology analysis showed that the unique genes of the two strains were distributed in a wide range of functional categories. In addition, analysis of genes related to thermotolerance, signal transduction, and carbon/nitrogen/sulfur assimilation revealed the ability of this strain to adapt to inhospitable niches in hot springs, and these findings were preliminarily confirmed using experimental, cultivation-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.