Reductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion. Steady-state kinetic studies establish that the enzyme is capable of catalysing imine formation as well as reduction. Crystal structures of AspRedAm in complex with NADP(H) and also with both NADP(H) and the pharmaceutical ingredient (R)-rasagiline are reported. We also demonstrate preparative scale reductive aminations with wild-type and Q240A variant biocatalysts displaying total turnover numbers of up to 32,000 and space time yields up to 3.73 g l d.
Imine reductases (IREDs) have emerged as a valuable new set of biocatalysts for the asymmetric synthesis of optically active amines. The development of bioinformatics tools and searchable databases has led to the identification of a diverse range of new IRED biocatalysts that have been characterised and employed in different synthetic processes. This review describes the latest developments in the structural and mechanistic aspects of IREDs, together with synthetic applications of these enzymes, and identifies ongoing and future challenges in the field.
Reductive aminases (RedAms) catalyze the asymmetric reductive amination of ketones with primary amines to give secondary amine products. RedAms have great potential for the synthesis of bioactive chiral amines; however, insights into their mechanism are currently limited. Comparative studies on reductive amination of cyclohexanone with allylamine in the presence of RedAms, imine reductases (IREDs), or NaBH3CN support the distinctive activity of RedAms in catalyzing both imine formation and reduction in the reaction. Structures of AtRedAm from Aspergillus terreus, in complex with NADPH and ketone and amine substrates, along with kinetic analysis of active-site mutants, reveal modes of substrate binding, the basis for the specificity of RedAms for reduction of imines over ketones, and the importance of domain flexibility in bringing the reactive participants together for the reaction. This information is used to propose a mechanism for their action and also to expand the substrate specificity of RedAms using protein engineering.
Asymmetric reductive aminations are some of the most important reactions in the preparation of active pharmaceuticals, as chiral amines feature in many of the world's most important drugs. Although many enzymes have been applied to the synthesis of chiral amines, the development of reductive amination reactions that use enzymes is attractive, as it would permit the one‐step transformation of readily available prochiral ketones into chiral amines of high optical purity. However, as most natural “reductive aminase” activities operate on keto acids, and many are able to use only ammonia as the amine donor, there is considerable scope for the engineering of natural enzymes for the reductive amination of ketones, and also for the preparation of secondary amines using alkylamines as donors. This review summarises research into the development of NAD(P)H‐dependent dehydrogenases for the reductive amination of ketones, including amino acid dehydrogenases (AADHs), natural amine dehydrogenases (AmDHs), opine dehydrogenases (OpDHs) and imine reductases (IREDs). In each case knowledge of the structure and mechanism of the enzyme class is addressed, with a further description of the engineering of those enzymes for the reductive amination of ketones towards primary and also secondary amine products.
We report the exploration of the evolutionary relationship between imine reductases (IREDs) and other dehydrogenases. This approach is informed by the sequence similarity between these enzyme families and the recently described promiscuous activity of IREDs for the highly reactive carbonyl compound 2,2,2-trifluoroacetophenone. Using the structure of the R-selective IRED from Streptosporangium roseum (R-IRED-Sr) as a model, β-hydroxyacid dehydrogenases (βHADs) were identified as the dehydrogenases most similar to IREDs. To understand how active site differences in IREDs and βHADs enable the reduction of predominantly C = N or C = O bonds respectively, we substituted amino acid residues in βHADs with the corresponding residues from the R-IRED-Sr and were able to increase the promiscuous activity of βHADs for C = N functions by a single amino acid substitution. Variants βHADAt_K170D and βHADAt_K170F lost mainly their keto acid reduction activity and gained the ability to catalyze the reduction of imines. Moreover, the product enantiomeric purity for a bulky imine substrate could be increased from 23% ee (R-IRED-Sr) to 97% ee (βHADAt_K170D/F_F231A) outcompeting already described IRED selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.