Reductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion. Steady-state kinetic studies establish that the enzyme is capable of catalysing imine formation as well as reduction. Crystal structures of AspRedAm in complex with NADP(H) and also with both NADP(H) and the pharmaceutical ingredient (R)-rasagiline are reported. We also demonstrate preparative scale reductive aminations with wild-type and Q240A variant biocatalysts displaying total turnover numbers of up to 32,000 and space time yields up to 3.73 g l d.
Imine reductases (IREDs) have emerged as a valuable new set of biocatalysts for the asymmetric synthesis of optically active amines. The development of bioinformatics tools and searchable databases has led to the identification of a diverse range of new IRED biocatalysts that have been characterised and employed in different synthetic processes. This review describes the latest developments in the structural and mechanistic aspects of IREDs, together with synthetic applications of these enzymes, and identifies ongoing and future challenges in the field.
Reductive
aminases (RedAms) catalyze the asymmetric reductive amination
of ketones with primary amines to give secondary amine products. RedAms
have great potential for the synthesis of bioactive chiral amines;
however, insights into their mechanism are currently limited. Comparative
studies on reductive amination of cyclohexanone with allylamine in
the presence of RedAms, imine reductases (IREDs), or NaBH3CN support the distinctive activity of RedAms in catalyzing both
imine formation and reduction in the reaction. Structures of AtRedAm from Aspergillus terreus, in complex with NADPH and ketone and amine substrates, along with
kinetic analysis of active-site mutants, reveal modes of substrate
binding, the basis for the specificity of RedAms for reduction of
imines over ketones, and the importance of domain flexibility in bringing
the reactive participants together for the reaction. This information
is used to propose a mechanism for their action and also to expand
the substrate specificity of RedAms using protein engineering.
Reductive amination of carbonyl compounds constitutes one of the most efficient ways to rapidly construct chiral and achiral amine frameworks. Imine reductase (IRED) biocatalysts represent a versatile family of enzymes for amine synthesis through NADPH‐mediated imine reduction. The reductive aminases (RedAms) are a subfamily of IREDs that were recently shown to catalyze imine formation as well as imine reduction. Herein, a diverse library of novel enzymes were expressed and screened as cell‐free lysates for their ability to facilitate reductive amination to expand the known suite of biocatalysts for this transformation and to identify more enzymes with potential industrial applications. A range of ketones and amines were examined, and enzymes were identified that were capable of accepting benzylamine, pyrrolidine, ammonia, and aniline. Amine equivalents as low as 2.5 were employed to afford up to >99 % conversion, and for chiral products, up to >98 % ee could be achieved. Preparative‐scale reactions were conducted with low amine equivalents (1.5 or 2.0) of methylamine, allylamine, and pyrrolidine, achieving up to >99 % conversion and 76 % yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.