Self-compacted concrete (SCC) is cast in the formwork without compaction and it fulfills the formwork due to its own weight. SCC is considered to have many advantages in comparison with conventional concrete like improved construction quality, faster construction activity, reduced cost etc. SCC is produced with the same ingredients of normal concrete. However, cementitious materials are also adopted to replace the cement content in SCC in order to use waste materials from industries and agricultural products. To further enhance the performance of SCC, different types of fibers are tried in order to produce fiber reinforced SCC. The fibers in the concrete bridge the cracks and diffuse the crack propagation which improves mechanical properties. In developed countries SCC has reasonable acceptance in construction industry but in developing countries like Pakistan has not gained acceptance. This paper is focused on undertaking a review of SCC with cement replacement and fiber reinforcement materials. The main objective of this paper is to compile the literature in order to understand the various properties of SCC in fresh and hardened state when these cement replacement materials and fibers are used.
This research paper aims at investigating the effects of fly ash as cement replacement in green concrete made with partial replacement of conventional coarse aggregates with coarse aggregates from demolishing waste. Green concrete developed with waste materials is an active area of research as it helps in reducing the waste management issues and protecting the environment. Six concrete mixes were prepared using 1:2:4 ratio and demolishing waste was used in equal proportion with conventional aggregates, whereas fly ash was used from 0%-10% with an increment of 2.5%. The water-cement ratio used was equal to 0.5. Out of these mixes, one mix was prepared with all conventional aggregates and was used as the control, and one mix with 0% fly ash had only conventional and recycled aggregates. The slump test of all mixes was determined. A total of 18 cylinders of standard size were prepared and cured for 28 days. After curing the compressive strength of the specimens was evaluated under gradually increasing load until failure. It is observed that 5% replacement of cement with fly ash and 50% recycled aggregates gives better results. With this level of dosage of two waste materials, the reduction in compressive strength is about 11%.
This research paper discusses the change in the workability and strength characteristics of Self Compacting Concrete (SCC) due to addition of fly-ash and use of un-crushed Coarse Aggregate (CA). Laboratory based experimental work was carried out by preparing 12 SCC mixtures among which six mixtures contained crushed aggregate and other six mixtures contained un-crushed coarse aggregate. A total of 550 kg/m3 binder content and fixed Water-Binder (W/B) ratio as 0.35 were used. Two mixtures were controlled by using Portland Cement (PC) and other ten mixtures contained PC and Fly Ash (FA). Slump flow time, slump flow diameter and J-ring height tests were conducted to study the fresh properties of SCC. Furthermore, compressive strength was calculated at 7, 14 and 28 days of curing. The outcomes indicated that the slump flow time, slump flow diameter and J-Ring height for all the mixes are within the limits specified by EFNARC guidelines. The compressive strength of SCCs depends upon dosage of fly ash. Compressive strength for SCCs with crushed CA was better than obtained in case of un-crushed CA. The maximum compressive-strengths were observed as 64.58 MPa and 58.05 MPa for SCC with crushed and un-crushed CA respectively.
The self-compacted concrete (SCC) is a special type of concrete which settles down in the formwork and fills its every corner without any use of compaction or vibration. As SCC has higher flow-ability that causes brittle behaviour resulting in poor performance under tension and bending. The inclusion of randomly distributed short and discrete fibers is one of the most effective way to improve the tensile as well as flexural performance of SCC. In this regard this experimental study is undertaken to investigate the effect of nylon fibers (NF) on fresh and hardened properties of SCC. Two different lengths; 20 mm and 12 mm and five different volumetric percentages; 0.1, 0.2, 0.3, 0.4 and 0.5% of NF were used. The results revealed that addition of NF slightly affects the fresh properties of SCC. However, the extent of the effect is not of that order to be considered as major factor. The fresh properties for entire mixes lie within the required range according to EFNARC guidelines. The strength properties increases with addition of NF, the extent of increment is greater for the longer length of NF. The optimum volumetric fraction of NF for producing high strength SCC was found as 0.5%. Doi: 10.28991/cej-2021-03091734 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.