This paper provides a comprehensive analysis of the performance of hyperspectral imaging for detecting adulteration in red-meat products. A dataset of line-scanning images of lamb, beef, or pork muscles was collected taking into account the state of the meat (fresh, frozen, thawed, and packing and unpacking the sample with a transparent bag). For simulating the adulteration problem, meat muscles were defined as either a class of lamb or a class of beef or pork. We investigated handcrafted spectral and spatial features by using the support vector machines (SVM) model and self-extraction spectral and spatial features by using a deep convolution neural networks (CNN) model. Results showed that the CNN model achieves the best performance with a 94.4% overall classification accuracy independent of the state of the products. The CNN model provides a high and balanced F-score for all classes at all stages. The resulting CNN model is considered as being simple and fairly invariant to the condition of the meat. This paper shows that hyperspectral imaging systems can be used as powerful tools for rapid, reliable, and non-destructive detection of adulteration in red-meat products. Also, this study confirms that deep-learning approaches such as CNN networks provide robust features for classifying the hyperspectral data of meat products; this opens the door for more research in the area of practical applications (i.e., in meat processing).
Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70–100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.